Computational design problems arise in a number of settings, from synthetic biology to computer architectures. In this paper, we aim to solve data-driven model-based optimization (MBO) problems, where the goal is to find a design input that maximizes an unknown objective function provided access to only a static dataset of prior experiments. Such data-driven optimization procedures are the only practical methods in many real-world domains where active data collection is expensive (e.g., when optimizing over proteins) or dangerous (e.g., when optimizing over aircraft designs). Typical methods for MBO that optimize the design against a learned model suffer from distributional shift: it is easy to find a design that "fools" the model into predicting a high value. To overcome this, we propose conservative objective models (COMs), a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs, and uses it for optimization. Structurally, COMs resemble adversarial training methods used to overcome adversarial examples. COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems, including optimizing protein sequences, robot morphologies, neural network weights, and superconducting materials.
翻译:从合成生物学到计算机结构等许多环境都会出现计算设计问题。 在本文中,我们的目标是解决数据驱动模型优化(MBO)问题,目的是找到设计投入,使未知的客观功能最大化,但只能提供先前实验的静态数据集。这类数据驱动优化程序是许多现实世界领域的唯一实用方法,在现实世界领域,积极数据收集费用昂贵(例如,对蛋白进行优化)或危险(例如,在优化飞机设计时),对学习的模型进行优化设计的典型方法因分布式变化而受到影响:很容易找到一种设计,使模型“玻璃”能够预测高价值。为了克服这一点,我们提出了保守的客观模型(COMs),这一方法学习了一种目标功能的模型,该模型将地面图目标的实际价值限制在分配投入之外,并用于优化。在结构上,COMs类似于用来克服对抗对称模型的典型培训方法。 COMs很容易找到一种设计,即“玻璃”模型“玻璃”设计,从而预测高价值。为了克服这一点,我们提出了保守的客观模型模型(COMs),这一方法可以学习一种模型模型的模型的模型,该模型,该模型在广泛范围内,包括最优化的机器人的模型的模型的模型的模型中存在问题。