Zero-shot information extraction (IE) aims to build IE systems from the unannotated text. It is challenging due to involving little human intervention. Challenging but worthwhile, zero-shot IE reduces the time and effort that data labeling takes. Recent efforts on large language models (LLMs, e.g., GPT-3, ChatGPT) show promising performance on zero-shot settings, thus inspiring us to explore prompt-based methods. In this work, we ask whether strong IE models can be constructed by directly prompting LLMs. Specifically, we transform the zero-shot IE task into a multi-turn question-answering problem with a two-stage framework (ChatIE). With the power of ChatGPT, we extensively evaluate our framework on three IE tasks: entity-relation triple extract, named entity recognition, and event extraction. Empirical results on six datasets across two languages show that ChatIE achieves impressive performance and even surpasses some full-shot models on several datasets (e.g., NYT11-HRL). We believe that our work could shed light on building IE models with limited resources.
翻译:零点信息提取 (IE) 旨在从未附加说明的文本中建立信息传输系统(IE) 。 挑战性但价值不大, 零点IE 减少了数据标签所需的时间和努力。 最近关于大型语言模型(LLMs,例如GPT-3, ChattGPT) 的努力显示,在零点设置方面表现良好, 从而激励我们探索基于迅速的方法。 在这项工作中, 我们问是否可以直接推动LMS 来构建强大的信息传输模型。 具体地说, 我们用两个阶段的框架( ChatIE)将零点信息传输任务转化为多点问题解答问题( ChatIE ) 。 在CatGPT的力量下,我们广泛评估了我们关于三种信息传输任务的框架:实体关系三重精选、 实体识别和事件提取。 关于两个语言的六个数据集的实证结果显示, ChatisteIE 取得了令人印象深刻的绩效, 甚至超过了几个数据集(例如NYT11-HRL) 的全点模型。 我们认为, 我们的工作可以利用有限资源来为建立IE 模型。