Recently, large language models (LLMs) like ChatGPT have demonstrated remarkable performance across a variety of natural language processing tasks. However, their effectiveness in the financial domain, specifically in predicting stock market movements, remains to be explored. In this paper, we conduct an extensive zero-shot analysis of ChatGPT's capabilities in multimodal stock movement prediction, on three tweets and historical stock price datasets. Our findings indicate that ChatGPT is a "Wall Street Neophyte" with limited success in predicting stock movements, as it underperforms not only state-of-the-art methods but also traditional methods like linear regression using price features. Despite the potential of Chain-of-Thought prompting strategies and the inclusion of tweets, ChatGPT's performance remains subpar. Furthermore, we observe limitations in its explainability and stability, suggesting the need for more specialized training or fine-tuning. This research provides insights into ChatGPT's capabilities and serves as a foundation for future work aimed at improving financial market analysis and prediction by leveraging social media sentiment and historical stock data.
翻译:最近,像ChatGPT这样的大型语言模型(LLM)在各种自然语言处理任务上已经表现出了非凡的性能。然而,它们在金融领域,特别是在预测股市走势方面的效力还有待探索。在本文中,我们对ChatGPT在三个推文和历史股票价格数据集上进行了广泛的零-shot分析,分析其在多模式股票运动预测中的能力。我们的研究发现,ChatGPT是一位“华尔街新手”,在预测股市走势方面成绩有限,不仅不及最先进的方法,也不及使用价格特征的传统方法,例如线性回归。尽管Chain-of-Thought提示策略和推文的引入有潜力,但ChatGPT的表现仍然不及格。此外,我们观察到它的可解释性和稳定性存在局限性,表明需要更加专业的训练或微调。本研究为ChatGPT的能力提供了洞见,并为未来的工作奠定了基础,旨在通过利用社交媒体情绪和历史股票数据来改进金融市场分析和预测。