The solution of a partial differential equation can be obtained by computing the inverse operator map between the input and the solution space. Towards this end, we introduce a \textit{multiwavelet-based neural operator learning scheme} that compresses the associated operator's kernel using fine-grained wavelets. By explicitly embedding the inverse multiwavelet filters, we learn the projection of the kernel onto fixed multiwavelet polynomial bases. The projected kernel is trained at multiple scales derived from using repeated computation of multiwavelet transform. This allows learning the complex dependencies at various scales and results in a resolution-independent scheme. Compare to the prior works, we exploit the fundamental properties of the operator's kernel which enable numerically efficient representation. We perform experiments on the Korteweg-de Vries (KdV) equation, Burgers' equation, Darcy Flow, and Navier-Stokes equation. Compared with the existing neural operator approaches, our model shows significantly higher accuracy and achieves state-of-the-art in a range of datasets. For the time-varying equations, the proposed method exhibits a ($2X-10X$) improvement ($0.0018$ ($0.0033$) relative $L2$ error for Burgers' (KdV) equation). By learning the mappings between function spaces, the proposed method has the ability to find the solution of a high-resolution input after learning from lower-resolution data.


翻译:部分差异方程式的解决方案可以通过计算输入和解决方案空间之间的反运算符图获得部分差异方程式的解决方案。 为此, 我们引入了一种\ textit{ 以多波点为基础的神经操作员学习计划} 。 与先前的工程相比, 我们利用细微颗粒的波子压缩相关操作员的内核的基本特性。 我们通过明确嵌入反多波过滤器, 将内核的投影嵌入固定的多波列多声波阵列的基座上。 预测内核通过多次计算多波点变换来进行多个尺度的培训。 这样可以了解不同尺度的复杂依赖性, 并在解析独立方案中得出结果。 与先前的工程相比, 我们利用了相关操作员内核的基本特性, 从而可以进行数字高效的表达。 我们在 Kteweg-de Vrie( KdV) 方程式、 Burgers 方程式、 Darcy Protail 和 Navier- Stokes 方程式上进行实验。 与现有的神经操作器操作方法相比, 我们的模型显示的精确度要高得多, 并达到分辨率, 以0.00美元的分辨率, 等方程式, 相对的平方程式, 等式, 。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月6日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员