The solution of a partial differential equation can be obtained by computing the inverse operator map between the input and the solution space. Towards this end, we introduce a \textit{multiwavelet-based neural operator learning scheme} that compresses the associated operator's kernel using fine-grained wavelets. By explicitly embedding the inverse multiwavelet filters, we learn the projection of the kernel onto fixed multiwavelet polynomial bases. The projected kernel is trained at multiple scales derived from using repeated computation of multiwavelet transform. This allows learning the complex dependencies at various scales and results in a resolution-independent scheme. Compare to the prior works, we exploit the fundamental properties of the operator's kernel which enable numerically efficient representation. We perform experiments on the Korteweg-de Vries (KdV) equation, Burgers' equation, Darcy Flow, and Navier-Stokes equation. Compared with the existing neural operator approaches, our model shows significantly higher accuracy and achieves state-of-the-art in a range of datasets. For the time-varying equations, the proposed method exhibits a ($2X-10X$) improvement ($0.0018$ ($0.0033$) relative $L2$ error for Burgers' (KdV) equation). By learning the mappings between function spaces, the proposed method has the ability to find the solution of a high-resolution input after learning from lower-resolution data.
翻译:部分差异方程式的解决方案可以通过计算输入和解决方案空间之间的反运算符图获得部分差异方程式的解决方案。 为此, 我们引入了一种\ textit{ 以多波点为基础的神经操作员学习计划} 。 与先前的工程相比, 我们利用细微颗粒的波子压缩相关操作员的内核的基本特性。 我们通过明确嵌入反多波过滤器, 将内核的投影嵌入固定的多波列多声波阵列的基座上。 预测内核通过多次计算多波点变换来进行多个尺度的培训。 这样可以了解不同尺度的复杂依赖性, 并在解析独立方案中得出结果。 与先前的工程相比, 我们利用了相关操作员内核的基本特性, 从而可以进行数字高效的表达。 我们在 Kteweg-de Vrie( KdV) 方程式、 Burgers 方程式、 Darcy Protail 和 Navier- Stokes 方程式上进行实验。 与现有的神经操作器操作方法相比, 我们的模型显示的精确度要高得多, 并达到分辨率, 以0.00美元的分辨率, 等方程式, 相对的平方程式, 等式, 。