We propose a novel framework for constructing linear time-invariant (LTI) models for data-driven representations of the Koopman operator for a class of stable nonlinear dynamics. The Koopman operator (generator) lifts a finite-dimensional nonlinear system to a possibly infinite-dimensional linear feature space. To utilize it for modeling, one needs to discover finite-dimensional representations of the Koopman operator. Learning suitable features is challenging, as one needs to learn LTI features that are both Koopman-invariant (evolve linearly under the dynamics) as well as relevant (spanning the original state) - a generally unsupervised learning task. For a theoretically well-founded solution to this problem, we propose learning Koopman-invariant coordinates by composing a diffeomorphic learner with a lifted aggregate system of a latent linear model. Using an unconstrained parameterization of stable matrices along with the aforementioned feature construction, we learn the Koopman operator features without assuming a predefined library of functions or knowing the spectrum, while ensuring stability regardless of the operator approximation accuracy. We demonstrate the superior efficacy of the proposed method in comparison to a state-of-the-art method on the well-known LASA handwriting dataset.
翻译:我们为库普曼操作员为一组稳定的非线性动态构建线性时变模型(LTI)构建一个新颖的框架。 库普曼操作员( generator) 将一个有限维非线性非线性系统提升到一个可能无限的线性特征空间。 要将它用于建模, 就需要发现库普曼操作员的有限维度代表。 学习合适的特征具有挑战性, 因为人们需要学习科普曼操作员既为库普曼- 内变异( 线性在动态下不断演变), 也具有相关( 跨越原始状态) 和相关( 通常不受监督的学习任务) 的LTI 特征。 对于一个有理论根据的、 可能无限线性模型的集成系统, 我们提议通过配置一个变异形学习器来学习一个可能无限的线性化的线性空间。 使用一个未受限制的稳定矩阵的参数和上述特征构造, 我们学习科普曼操作员的特性, 但不假定一个预先定义的职能库普罗特的图书馆或了解光谱系, 同时确保稳定性, 不论操作员的精确度的精确度如何精确性。 我们用一个高超甚甚甚的实验室方法比较。 我们展示了所提议的方法, 。