Randomization has shown catalyzing effects in linear algebra with promising perspectives for tackling computational challenges in large-scale problems. For solving a system of linear equations, we demonstrate the convergence of a broad class of algorithms that at each step pick a subset of $n$ equations at random and update the iterate with the orthogonal projection to the subspace those equations represent. We identify, in this context, a specific degree-$n$ polynomial that non-linearly transforms the singular values of the system towards equalization. This transformation to singular values and the corresponding condition number then characterizes the expected convergence rate of iterations. As a consequence, our results specify the convergence rate of the stochastic gradient descent algorithm, in terms of the mini-batch size $n$, when used for solving systems of linear equations.
翻译:随机化显示了线性代数的催化效应, 并展示了应对大规模问题计算挑战的有希望的前景。 为了解决线性方程式系统, 我们演示了广泛的算法类别的趋同, 每一步随机选取一子美元方程式, 并更新其与这些方程式所代表的子空间的正方形投影的迭代。 我们在此情况下确定了一个非线性地将系统单值转换为均匀的特定度- 美元多元值。 这种转换为单值, 以及相应的条件号, 从而决定了迭代的预期趋同率。 因此, 我们的结果指定了用于解决线性方程式系统时, 微型批量梯度梯度下降法的趋同率 $ 。