We introduce a new class of preconditioners to enable flexible GMRES to find a least-squares solution, and potentially the pseudoinverse solution, of large-scale sparse, asymmetric, singular, and potentially inconsistent systems. We develop the preconditioners based on a new observation that generalized inverses (i.e., $\boldsymbol{A}^{g}\in\{\boldsymbol{G}\mid\boldsymbol{A}\boldsymbol{G}\boldsymbol{A}=\boldsymbol{A}\}$) enable the preconditioned Krylov subspaces to converge in a single step. We then compute an approximate generalized inverse (AGI) efficiently using a hybrid incomplete factorization (HIF), which combines multilevel incomplete LU with rank-revealing QR on its final Schur complement. We define the criteria of $\epsilon$-accuracy and stability of AGI to guarantee the convergence of preconditioned GMRES for consistent systems. For inconsistent systems, we fortify HIF with iterative refinement to obtain HIFIR, which allows accurate computations of the null-space vectors. By combining the two techniques, we then obtain a new solver, called PIPIT, for obtaining the pseudoinverse solutions for systems with low-dimensional null spaces. We demonstrate the robustness of HIF and HIFIR and show that they improve both accuracy and efficiency of the prior state of the art by orders of magnitude for systems with up to a million unknowns.
翻译:我们引入了新型的前提条件,使灵活GMRES能够找到最小值的解决方案,并有可能找到假反向解决方案,即大规模分散、不对称、单一和可能不一致的系统。我们根据一种普遍化的新观察(即$\boldsymbol{A ⁇ g ⁇ in ⁇ boldsymbol{G ⁇ mid\boldsymbol{G ⁇ boldsymbol{G ⁇ boldsymbol{A ⁇ boldsymbol{A ⁇ boldsymbol{A ⁇ $$),开发了新的先决条件,使具有前提条件的Krylov子空间能够以单一步骤整合。然后,我们利用一种混合的不完全系数化(HIF),有效地将多级不完全的LU与级反射QR(Schur)合并起来。我们定义了AGIF的准确的准确的准确性价比标准,以确保具有一致性系统的前提条件性GRRES与系统汇合起来。为了不一致性,我们用对HIF的迭精确性精确的精确的精度改进,通过先获得硬度的硬度的硬度的硬度的硬度的硬度方法,从而获得硬度的硬度的硬度的硬度的硬度的硬度的硬度的硬度的硬度系统,从而显示我们的硬度系统。