This paper introduces an Ordinary Differential Equation (ODE) notion for survival analysis. The ODE notion not only provides a unified modeling framework, but more importantly, also enables the development of a widely applicable, scalable, and easy-to-implement procedure for estimation and inference. Specifically, the ODE modeling framework unifies many existing survival models, such as the proportional hazards model, the linear transformation model, the accelerated failure time model, and the time-varying coefficient model as special cases. The generality of the proposed framework serves as the foundation of a widely applicable estimation procedure. As an illustrative example, we develop a sieve maximum likelihood estimator for a general semi-parametric class of ODE models. In comparison to existing estimation methods, the proposed procedure has advantages in terms of computational scalability and numerical stability. Moreover, to address unique theoretical challenges induced by the ODE notion, we establish a new general sieve M-theorem for bundled parameters and show that the proposed sieve estimator is consistent and asymptotically normal, and achieves the semi-parametric efficiency bound. The finite sample performance of the proposed estimator is examined in simulation studies and a real-world data example.
翻译:本文介绍了用于生存分析的普通差异等同(ODE)概念。ODE概念不仅提供了一个统一的模型框架,而且更重要的是,不仅提供了一个统一的模型框架,而且还有助于为估计和推论制定广泛适用、可伸缩和易于执行的程序。具体地说,ODE模型框架统一了许多现有的生存模型模型,例如成比例危害模型、线性转变模型、加速故障时间模型和作为特殊情况的计时系数模型。拟议框架的一般性作为广泛适用的估计程序的基础。作为一个示例,我们为普通半参数类的ODE模型开发了一个最高可能性估计器。与现有的估算方法相比,拟议的程序在计算可伸缩性和数字稳定性方面具有优势。此外,为了应对由ODE概念引起的独特的理论挑战,我们为捆绑参数建立了一个新的一般的缩略式 M 理论,并表明拟议的Sieve 估计器是一致的,也是正常的。作为一个示例,我们为在模拟中实现半临界效率的模型,所研究的定数性模型是一定的。