Neural field models are nonlinear integro-differential equations for the evolution of neuronal activity, and they are a prototypical large-scale, coarse-grained neuronal model in continuum cortices. Neural fields are often simulated heuristically and, in spite of their popularity in mathematical neuroscience, their numerical analysis is not yet fully established. We introduce generic projection methods for neural fields, and derive a-priori error bounds for these schemes. We extend an existing framework for stationary integral equations to the time-dependent case, which is relevant for neuroscience applications. We find that the convergence rate of a projection scheme for a neural field is determined to a great extent by the convergence rate of the projection operator. This abstract analysis, which unifies the treatment of collocation and Galerkin schemes, is carried out in operator form, without resorting to quadrature rules for the integral term, which are introduced only at a later stage, and whose choice is enslaved by the choice of the projector. Using an elementary timestepper as an example, we demonstrate that the error in a time stepper has two separate contributions: one from the projector, and one from the time discretisation. We give examples of concrete projection methods: two collocation schemes (piecewise-linear and spectral collocation) and two Galerkin schemes (finite elements and spectral Galerkin); for each of them we derive error bounds from the general theory, introduce several discrete variants, provide implementation details, and present reproducible convergence tests.
翻译:神经场模型是神经活动进化的非线性内分形神经活动的非线性内分形方程式,是神经活动进化的非线性内分形模型,是神经神经领域的原型大型、粗粗重神经模型,在连续的螺旋形内,神经场往往是模拟的,尽管在数学神经科学中很受欢迎,但其数值分析尚未完全建立。我们为神经场引入通用的预测方法,并为这些图案定出优先错误界限。我们把固定整体方程式的现有框架扩大到与神经科学应用相关的时间依赖性方程式。我们发现,神经领域预测方案的趋同率在很大程度上是由投影操作者的趋同率决定的。这种抽象分析,虽然在数学神经科学中很受欢迎,但是还没有完全建立其数值分析,我们不采用整体术语的四重置规则,而这种规则只是后来才被引入的,而且其选择由投影仪所奴役的。我们以初级时间档为例,我们用一个时间档的误差来证明一个时间轴的神经场域域域域图,每个直径直径直线图中有两个不同的分数:一个数值测,从一个直径直径直径直线的测的平的测法,从一个直径直线图,从一个直射线图的两分级图,一个直取两个推一个直射法。