Acquiring annotated data at scale with rare diseases or conditions remains a challenge. It would be extremely useful to have a method that controllably synthesizes images that can correct such underrepresentation. Assuming a proper latent representation, the idea of a "latent vector arithmetic" could offer the means of achieving such synthesis. A proper representation must encode the fidelity of the input data, preserve invariance and equivariance, and permit arithmetic operations. Motivated by the ability to disentangle images into spatial anatomy (tensor) factors and accompanying imaging (vector) representations, we propose a framework termed "disentangled anatomy arithmetic", in which a generative model learns to combine anatomical factors of different input images such that when they are re-entangled with the desired imaging modality (e.g. MRI), plausible new cardiac images are created with the target characteristics. To encourage a realistic combination of anatomy factors after the arithmetic step, we propose a localized noise injection network that precedes the generator. Our model is used to generate realistic images, pathology labels, and segmentation masks that are used to augment the existing datasets and subsequently improve post-hoc classification and segmentation tasks. Code is publicly available at https://github.com/vios-s/DAA-GAN.


翻译:以稀有疾病或条件大规模获取附加说明的数据仍是一项挑战。 采用一种能够控制图像综合成能够纠正这种代表性不足的图像的方法将极为有用。 假设适当的潜在表达方式, “ 相对矢量计算” 的概念可以提供实现这种合成的手段。 适当的表达方式必须将输入数据的真实性编码, 保存变化性和不均匀性, 并允许计算操作。 由于能够将图像分解成空间解剖( 加速) 系数和相伴成像( 矢量) 表示, 我们提议了一个名为“ 分解解解解剖算术” 的框架, 其中基因化模型学会将不同输入图像的解剖因素结合起来, 这样当它们与理想的成像模式( 如 MRI ) 重新结合时, 合理的新的心力图像必须具有目标特性。 为了鼓励在算术步骤之后将解剖因素现实地组合在一起, 我们提议了一个本地化的噪声注射网络。 我们的模型用来生成现实的图像、 病理学标签, 以及分解式式的面具。 将用来改进现有的数据分类/ 。 在 MADA 格式 进行 进行 的分类和 。

0
下载
关闭预览

相关内容

【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
专知会员服务
32+阅读 · 2020年12月25日
2019中国硬科技发展白皮书 193页
专知会员服务
82+阅读 · 2019年12月13日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2021年1月7日
Arxiv
5+阅读 · 2020年10月2日
SlowFast Networks for Video Recognition
Arxiv
4+阅读 · 2019年4月18日
VIP会员
相关资讯
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员