Autoencoders provide a powerful framework for learning compressed representations by encoding all of the information needed to reconstruct a data point in a latent code. In some cases, autoencoders can "interpolate": By decoding the convex combination of the latent codes for two datapoints, the autoencoder can produce an output which semantically mixes characteristics from the datapoints. In this paper, we propose a regularization procedure which encourages interpolated outputs to appear more realistic by fooling a critic network which has been trained to recover the mixing coefficient from interpolated data. We then develop a simple benchmark task where we can quantitatively measure the extent to which various autoencoders can interpolate and show that our regularizer dramatically improves interpolation in this setting. We also demonstrate empirically that our regularizer produces latent codes which are more effective on downstream tasks, suggesting a possible link between interpolation abilities and learning useful representations.
翻译:自动编码器提供了一个强大的框架来学习压缩表达方式, 将重建潜在代码中数据点所需的全部信息编码。 在某些情况下, 自动编码器可以“ 内插 ” : 通过解码两个数据点潜在代码的组合, 自动编码器可以产生一个输出, 将数据点的特性从语义上混为一体。 在本文件中, 我们提议了一个正规化程序, 鼓励通过欺骗一个经过训练从内插数据中恢复混合系数的批评网络, 使内插输出显得更加现实。 然后, 我们开发了一个简单的基准任务, 我们可以定量测量各种自动编码器能够内插的程度, 并显示我们的正规化器能够大大改善这一环境的内插。 我们还从经验上表明, 我们的正规化器生成了对下游任务更加有效的潜在代码, 表明内插能力和学习有用的表达方式之间可能存在联系。