We propose a temporally coherent generative model addressing the super-resolution problem for fluid flows. Our work represents a first approach to synthesize four-dimensional physics fields with neural networks. Based on a conditional generative adversarial network that is designed for the inference of three-dimensional volumetric data, our model generates consistent and detailed results by using a novel temporal discriminator, in addition to the commonly used spatial one. Our experiments show that the generator is able to infer more realistic high-resolution details by using additional physical quantities, such as low-resolution velocities or vorticities. Besides improvements in the training process and in the generated outputs, these inputs offer means for artistic control as well. We additionally employ a physics-aware data augmentation step, which is crucial to avoid overfitting and to reduce memory requirements. In this way, our network learns to generate advected quantities with highly detailed, realistic, and temporally coherent features. Our method works instantaneously, using only a single time-step of low-resolution fluid data. We demonstrate the abilities of our method using a variety of complex inputs and applications in two and three dimensions.


翻译:我们提出一个解决流体流中超分辨率问题的具有时间一致性的基因模型。我们的工作是利用神经网络合成四维物理学领域的第一种方法。根据一个有条件的基因对抗网络,我们的模式是用来推断三维体积数据的,除了常用的空间模型之外,还使用一个新的时间区分器,产生了一致和详细的结果。我们的实验表明,生成器能够通过使用更多的物理数量,例如低分辨率速度或动态,推断出更现实的高分辨率细节。除了培训过程和产生的产出的改进外,这些投入还提供了艺术控制手段。我们还采用了一个具有物理意识的数据增强步骤,这对于避免过分适应和减少记忆要求至关重要。这样,我们的网络学会了以非常详细、现实和时间一致的特点生成堆积的数量。我们的方法可以瞬间发挥作用,只使用一个低分辨率流体积数据的单一时间步骤。我们用多种复杂的投入和应用在两个和三个层面展示了我们的方法的能力。

5
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
160+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
196+阅读 · 2019年9月30日
带你读论文 | 生成对抗网络GAN论文TOP 10
微软研究院AI头条
24+阅读 · 2019年4月11日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
SRGAN论文笔记
统计学习与视觉计算组
109+阅读 · 2018年4月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2019年9月26日
Pluralistic Image Completion
Arxiv
8+阅读 · 2019年3月11日
Single-frame Regularization for Temporally Stable CNNs
Learning Blind Video Temporal Consistency
Arxiv
3+阅读 · 2018年8月1日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关资讯
带你读论文 | 生成对抗网络GAN论文TOP 10
微软研究院AI头条
24+阅读 · 2019年4月11日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
SRGAN论文笔记
统计学习与视觉计算组
109+阅读 · 2018年4月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员