3D Morphable Model (3DMM) based methods have achieved great success in recovering 3D face shapes from single-view images. However, the facial textures recovered by such methods lack the fidelity as exhibited in the input images. Recent work demonstrates high-quality facial texture recovering with generative networks trained from a large-scale database of high-resolution UV maps of face textures, which is hard to prepare and not publicly available. In this paper, we introduce a method to reconstruct 3D facial shapes with high-fidelity textures from single-view images in-the-wild, without the need to capture a large-scale face texture database. The main idea is to refine the initial texture generated by a 3DMM based method with facial details from the input image. To this end, we propose to use graph convolutional networks to reconstruct the detailed colors for the mesh vertices instead of reconstructing the UV map. Experiments show that our method can generate high-quality results and outperforms state-of-the-art methods in both qualitative and quantitative comparisons.
翻译:3D 摩托模型 (DMM) 基础方法在从单视图像中恢复 3D 面部形状方面取得了巨大成功。 然而, 通过这些方法所恢复的面部纹理缺乏输入图像所显示的忠诚性。 最近的工作表明, 高质量的面部纹理在通过高分辨率的面部纹理图的大规模数据库培训的基因化网络中恢复了高质量的面部纹理。 这个数据库很难编制,也无法公开提供。 在本文中, 我们引入了一种方法来重建3D 面部形状, 其高度纤维化纹理来自一视图像, 不需要捕获大型的面部纹理数据库 。 主要的想法是完善基于 3DMM 方法的初始纹理, 并使用输入图像中的面部纹理细节。 为此, 我们提议使用图形的卷纹网络来重建网格中的详细颜色, 而不是重建紫外线图。 实验显示, 我们的方法可以在质和定量比较中产生高质量的结果和外形的外形状态方法。