Temporal grounding aims to localize temporal boundaries within untrimmed videos by language queries, but it faces the challenge of two types of inevitable human uncertainties: query uncertainty and label uncertainty. The two uncertainties stem from human subjectivity, leading to limited generalization ability of temporal grounding. In this work, we propose a novel DeNet (Decoupling and De-bias) to embrace human uncertainty: Decoupling - We explicitly disentangle each query into a relation feature and a modified feature. The relation feature, which is mainly based on skeleton-like words (including nouns and verbs), aims to extract basic and consistent information in the presence of query uncertainty. Meanwhile, modified feature assigned with style-like words (including adjectives, adverbs, etc) represents the subjective information, and thus brings personalized predictions; De-bias - We propose a de-bias mechanism to generate diverse predictions, aim to alleviate the bias caused by single-style annotations in the presence of label uncertainty. Moreover, we put forward new multi-label metrics to diversify the performance evaluation. Extensive experiments show that our approach is more effective and robust than state-of-the-arts on Charades-STA and ActivityNet Captions datasets.
翻译:时间定位的目的是通过语言查询,在未剪切的视频中将时间界限定位在语言查询中,但它面临着两种不可避免的人类不确定性的挑战:质疑不确定性和标签不确定性。两种不确定性源于人的主观性,导致时间定位的普及能力有限。在这项工作中,我们提议了一个新的DeNet(Decoupling和De-bias),以包含人类不确定性:脱钩 - 我们明确将每个查询与关联特征和经修改的特征脱钩; 关系特征,主要基于骨骼相似的词句(包括名词和动词),目的是在存在查询不确定性的情况下提取基本和一致的信息。 同时,用风格相似的单词(包括形容词、动词等)指定的修改功能代表了主观信息,从而带来了个性化预测; 脱钩 - 我们提议了一个脱偏见机制,以产生不同的预测,目的是减轻因存在标签不确定性的单式说明造成的偏差。 此外,我们提出了新的多标签指标,以便在存在查询不确定性的情况下使业绩评估多样化。 广泛的实验表明,我们的方法(包括形容词、动词等)比Charestal-Dasation Adalation Adals。