Object detection has been applied in a wide variety of real world scenarios, so detection algorithms must provide confidence in the results to ensure that appropriate decisions can be made based on their results. Accordingly, several studies have investigated the probabilistic confidence of bounding box regression. However, such approaches have been restricted to anchor-based detectors, which use box confidence values as additional screening scores during non-maximum suppression (NMS) procedures. In this paper, we propose a more efficient uncertainty-aware dense detector (UADET) that predicts four-directional localization uncertainties via Gaussian modeling. Furthermore, a simple uncertainty attention module (UAM) that exploits box confidence maps is proposed to improve performance through feature refinement. Experiments using the MS COCO benchmark show that our UADET consistently surpasses baseline FCOS, and that our best model, ResNext-64x4d-101-DCN, obtains a single model, single-scale AP of 48.3% on COCO test-dev, thus achieving the state-of-the-art among various object detectors.
翻译:在各种真实的世界情景中应用了物体探测,因此,检测算法必须提供对结果的信心,以确保根据结果作出适当决定。因此,一些研究已经调查了捆绑盒回归的概率性信心。然而,这类方法仅限于锚基探测器,在非最大抑制(NMS)程序期间,这种探测器使用箱信任值作为额外的筛选分数。在本文件中,我们建议使用一种效率更高的有不确定性的密度探测器(UADET),通过高森模型预测四向定位不确定性。此外,还提议使用一个简单的不确定性注意模块(UAM),利用箱信任图改进地貌,提高性能。使用MS COCO基准进行的实验表明,我们的UADET一直超过基准FCOS,我们的最佳模型Resnext-64x4d-101-DCN,在COCO测试-deve上获得一个单一的、48.3%的单级AP,从而在各种物体探测器中达到最新水平。