Autonomous navigation of drones using computer vision has achieved promising performance. Nano-sized drones based on edge computing platforms are lightweight, flexible, and cheap, thus suitable for exploring narrow spaces. However, due to their extremely limited computing power and storage, vision algorithms designed for high-performance GPU platforms cannot be used for nano drones. To address this issue this paper presents a lightweight CNN depth estimation network deployed on nano drones for obstacle avoidance. Inspired by Knowledge Distillation (KD), a Channel-Aware Distillation Transformer (CADiT) is proposed to facilitate the small network to learn knowledge from a larger network. The proposed method is validated on the KITTI dataset and tested on a nano drone Crazyflie, with an ultra-low power microprocessor GAP8.
翻译:自主导航的无人机使用计算机视觉已经取得了很好的性能。基于边缘计算平台的纳米无人机具有轻便,灵活,便宜等特点,因此适合探索狭窄的空间。然而,由于它们极其有限的计算能力和存储空间,为高性能GPU平台设计的视觉算法不能用于纳米无人机。为解决这个问题,本文提出了一种轻量级的卷积神经网络深度估计网络,以用于避免障碍物的纳米无人机上。受到知识蒸馏技术的启发,提出了一种通道感知的蒸馏变换器(CADiT),以促进小型网络从较大网络中学习知识。所提出的方法在KITTI数据集上进行验证,并在搭载超低功耗微处理器GAP8的纳米无人机Crazyflie上进行测试。