项目名称: 功能化石墨烯/聚(3,4-乙撑二氧噻吩)衍生物复合材料的可控制备及其电化学免疫传感研究

项目编号: No.51302117

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 卢丽敏

作者单位: 江西农业大学

项目金额: 25万元

中文摘要: 肿瘤标志物(TM)在癌症临床诊疗中具有重要作用,但目前TM因对早期诊断的敏感性低而难以广泛应用。近年来,石墨烯(GR)基材料在生物医学领域已得到广泛应用。本项目以氧化石墨烯(GO)和3,4-乙撑二氧噻吩衍生物(EDOT衍生物)为原料,通过一步电化学沉积方法制备功能化GR /聚(3,4-乙撑二氧噻吩)衍生物(GR/PEDOT衍生物)复合材料,对复合材料的制备条件、形成原理及电化学性质进行系统研究,发展厚度可控、生物兼容性好、有利于电子传递的纳米传感界面。在此界面上结合主-客体化学作用,将金刚烷标记的肿瘤抗体固定到GR/PEDOT-环糊精传感界面。通过夹心免疫反应结合TM以及肿瘤抗体-HRP-GO复合物,借助纳米材料信号放大技术,实现对TM的高灵敏检测,并推广于复杂生理样品中多种TMs的同时检测。该项目研究成果有望为肿瘤的早期诊断提供新的检测平台,因而具有广泛的生物医学理论依据和临床实用价值。

中文关键词: 石墨烯;聚(3;4-乙撑二氧噻吩);免疫传感器;肿瘤标志物;修饰电极

英文摘要: Tumor markers (TMs) have been of vital importance in cancer diagnosis and treatment. However, the sensitivity of TMs for early diagnosis is low and can not be widely used. In recent years, graphene (GR) based materials have been widely used in biomedical field. In the project, by a facile one-step electrodeposition method, GR/poly(3,4-ethylenedioxythiophene) derivative (GR/PEDOT derivative) composite films are synthesized on the surface of electrode using graphene oxide (GO) and 3,4-ethylenedioxythiophene (EDOT) derivative in monomer as the starting materials. The obtained GR/PEDOT derivative composite films show large specific area, high conductivity, good biocompatibility and fast redox properties. The formation mechanism, preparation conditions and electrochemical properties of GR/PEDOT derivative are carefully discussed. An efficient method (host-guest chemistry) is used to immobilize bioactive primary antibodies (Ab1) onto the suaface of GR/PEDOT-cyclodextrin composite films. Immunoassay is carried out on a modified electrode using a sandwich assay approach, where Ab1 is covalently bound to the sensing interface to be allowed to capture TM specifically. Afterwards, HRP-Ab2-GO is allowed to bind selectively to the captured TM. Sensitivity is greatly enhanced by an amplified electrocatalytic response by the r

英文关键词: graphene;poly (3;4-ethylenedioxythiophene);immunosensor;tumor marker;modified electrode

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月8日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2020年12月28日
小目标检测技术研究综述
专知会员服务
118+阅读 · 2020年12月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
126+阅读 · 2020年9月6日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月8日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2020年12月28日
小目标检测技术研究综述
专知会员服务
118+阅读 · 2020年12月7日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月19日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
126+阅读 · 2020年9月6日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
微信扫码咨询专知VIP会员