Diffusion probabilistic models (DPMs) have achieved impressive success in high-resolution image synthesis, especially in recent large-scale text-to-image generation applications. An essential technique for improving the sample quality of DPMs is guided sampling, which usually needs a large guidance scale to obtain the best sample quality. The commonly-used fast sampler for guided sampling is DDIM, a first-order diffusion ODE solver that generally needs 100 to 250 steps for high-quality samples. Although recent works propose dedicated high-order solvers and achieve a further speedup for sampling without guidance, their effectiveness for guided sampling has not been well-tested before. In this work, we demonstrate that previous high-order fast samplers suffer from instability issues, and they even become slower than DDIM when the guidance scale grows large. To further speed up guided sampling, we propose DPM-Solver++, a high-order solver for the guided sampling of DPMs. DPM-Solver++ solves the diffusion ODE with the data prediction model and adopts thresholding methods to keep the solution matches training data distribution. We further propose a multistep variant of DPM-Solver++ to address the instability issue by reducing the effective step size. Experiments show that DPM-Solver++ can generate high-quality samples within only 15 to 20 steps for guided sampling by pixel-space and latent-space DPMs.
翻译:集成概率模型(DPMs)在高分辨率图像合成方面取得了令人印象深刻的成功,特别是在最近的大规模文本到图像生成应用中。改进DPM样本质量的一个重要技术是制导取样,这通常需要大指导比例才能获得最佳样本质量。为制导采样通常使用的快速采样器是DDIM(DDIM),这是用于制导采样的一级扩散解答器,一般需要100至250个步骤才能进行高质量采样。虽然最近的工作提议了专门的高级解答器,并在没有指导的情况下进一步加快采样速度,但指导采样的有效性以前还没有很好地测试。在这项工作中,我们证明以前的高级快速采样器受到不稳定问题的影响,当制导规模扩大时,它们甚至比DDIM慢。为了进一步加快制导采样速度,我们建议DPM-S-S++(DPM-S-S-DPMS-PMS-D)的高级解析点解答器,它用数据预测模型模型解决了传播模式,并采用临界方法使解决办法与培训数据分布相匹配。我们进一步提议,DPMS-BMS-DMS-BS-BAS-DV-C-D-D-DVI-C-D-DVD-D-D-PMS-PMS-制式高级试制式的多级试制式试样方法,只有低级的多步。我们为低级试制制制制制制制制制制,只有高级试器,只有高步。我们。我们。我们。我们用高级试制制制制制制制制式的多步。我们。我们制制制制制制制制制制制,以制制制制,以制制制制制式的低制制制制制制制制制制式,以制式,只有20制。我们。我们制模。我们提出高制式试器,只有20制式试。我们提出高级的低制式试器,只有制式试。