Wright-Fisher model has been widely used to represent random variation in allele frequency over time, due to its simple form even though, a closed analytical form for the allele frequency has not been constructed. However, variation in allele frequency allows to represent selection in the evolutionary process. In this work, we present two alternatives of parametric approximating functions: Asymptotic expansion (AE) and Gaussian approximation (GaussA), obtained by means of probabilistic tools and useful for statistical inference, to estimate the allele frequency density for a small $t/2N$ in the interval $[0,1]$. The proposed densities satisfactorily capture the problem of fixation at 0 or 1, unlike the commonly used methods. While Asymptotic Expansion defines a suitable density for the distribution allele frequency (DAF), Gaussian Approximation describes a range of validity for the Gaussian distribution. Through a simulation study and using an adaptive method for density estimation, the proposed densities are compared with the beta and Gaussian distribution with, their corresponding parameters.
翻译:Wright-Fisher模型由于简单的形式,没有为所有频率制作一种封闭的分析表,因此被广泛用于代表所有频度的随机变化,因为其形式很简单,所以没有为所有频度制作一种封闭的分析表,但是,所有频度的变化可以代表进化过程中的选择。在这项工作中,我们提出了两种参数近似加速功能的替代物:Asymptatistic 扩展(AE)和Gaussian 近似(Gaussian 近似(Gaussa),这是通过概率工具获得的,对统计推断有用,用来估计一个小的 $/0.2N$的超高频频率密度。提议的密度与通常使用的方法不同的是,令人满意密度令人满意地捕捉了固定为0或1的难题。虽然Asymptation 扩展为分布所有电子频度的合适密度(DAF),Gaussian Approximation介绍了高斯分布的正确性范围。通过模拟研究和对密度估计的适应方法,拟议的密度与Beb和高斯分布的参数进行了比较。