This paper extends quantile factor analysis to a probabilistic variant that incorporates regularization and computationally efficient variational approximations. By means of synthetic and real data experiments it is established that the proposed estimator can achieve, in many cases, better accuracy than a recently proposed loss-based estimator. We contribute to the literature on measuring uncertainty by extracting new indexes of low, medium and high economic policy uncertainty, using the probabilistic quantile factor methodology. Medium and high indexes have clear contractionary effects, while the low index is benign for the economy, showing that not all manifestations of uncertainty are the same.
翻译:本文将四分位系数分析扩大到一个概率变方,其中包括正规化和计算效率高的变差近似值。通过合成和实际数据实验,可以确定,在许多情况下,拟议的估计数字可以比最近提出的基于损失的估算数字更准确。我们利用概率量化系数方法,通过提取低、中、高经济政策不确定性的新指数,为衡量不确定性的文献作出了贡献。中高指数具有明显的收缩效应,而低指数对经济是无害的,表明并非所有不确定性的表现都是一样的。