Continuous-depth neural networks, such as the Neural Ordinary Differential Equations (ODEs), have aroused a great deal of interest from the communities of machine learning and data science in recent years, which bridge the connection between deep neural networks and dynamical systems. In this article, we introduce a new sort of continuous-depth neural network, called the Neural Piecewise-Constant Delay Differential Equations (PCDDEs). Here, unlike the recently proposed framework of the Neural Delay Differential Equations (DDEs), we transform the single delay into the piecewise-constant delay(s). The Neural PCDDEs with such a transformation, on one hand, inherit the strength of universal approximating capability in Neural DDEs. On the other hand, the Neural PCDDEs, leveraging the contributions of the information from the multiple previous time steps, further promote the modeling capability without augmenting the network dimension. With such a promotion, we show that the Neural PCDDEs do outperform the several existing continuous-depth neural frameworks on the one-dimensional piecewise-constant delay population dynamics and real-world datasets, including MNIST, CIFAR10, and SVHN.


翻译:近年来,诸如神经普通差异等连续深入的神经神经网络引起了机器学习和数据科学界的极大兴趣,这些网络连接了深神经网络和动态系统之间的联系。在本篇文章中,我们引入了一种新型的连续深度神经网络,称为神经粒子-即时延迟差异。这里,与最近提议的神经延迟差异(DDEs)框架不同,我们将单一延迟转化为零散的延迟。具有这种转变的神经多氯二苯并对二恶英一方面继承了神经DDEs中普遍接近能力的力量。另一方面,神经多氯二苯并呋喃利用以往多个时间步骤中的信息贡献,进一步促进建模能力,但又不增强网络的维度。通过这种促进,我们表明神经多氯二苯并呋喃超越了目前单维的连续深度神经框架,包括SMAR10-CFART-S-MART-C-DML-D-DMFM-D-DMFD-DM-DM-DR-D-DFD-D-DFD-DML-D-DDDD-DDD-D-DDDDDDDDDDDE-DE-DE-DDDDDD-D-D-DDDDDDDs-Ds-DDDDDDD-D-D-DDDDDDD-D-D-D-DDDDD-DDDD-D-D-DDDDDDDDDDDDDDD-DDDDDDDDDDDDD-DDDDDDs-C-D-D-D-DDDDDDDDDD-DEs-D-DDD-DEs-D-D-D-D-DDDDD-D-D-D-D-DDDDDDDDDDDDDDDDDD-D-DDDD-DDDDDDD-D-DDDDD-D-D-D-D-DD-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-

3
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员