Feature pyramid network (FPN) is a critical component in modern object detection frameworks. The performance gain in most of the existing FPN variants is mainly attributed to the increase of computational burden. An attempt to enhance the FPN is enriching the spatial information by expanding the receptive fields, which is promising to largely improve the detection accuracy. In this paper, we first investigate how expanding the receptive fields affect the accuracy and computational costs of FPN. We explore a baseline model called inception FPN in which each lateral connection contains convolution filters with different kernel sizes. Moreover, we point out that not all objects need such a complicated calculation and propose a new dynamic FPN (DyFPN). The output features of DyFPN will be calculated by using the adaptively selected branch according to a dynamic gating operation. Therefore, the proposed method can provide a more efficient dynamic inference for achieving a better trade-off between accuracy and computational cost. Extensive experiments conducted on MS-COCO benchmark demonstrate that the proposed DyFPN significantly improves performance with the optimal allocation of computation resources. For instance, replacing inception FPN with DyFPN reduces about 40% of its FLOPs while maintaining similar high performance.


翻译:现代天体探测框架(FPN)中,地貌金字塔网(FPN)是现代天体探测框架的一个关键组成部分。大多数现有的FPN变异器的性能增益主要归因于计算负担的增加。试图加强FPN的努力正在通过扩大可接收字段来丰富空间信息,这有望大大提高探测准确度。在本文件中,我们首先调查扩大可接收字段如何影响FPN的准确性和计算成本。我们探索一个称为Estart FPN的基线模型,其中每个横向连接都包含不同内核大小的熔过滤器。此外,我们指出,并非所有物体都需要这样复杂的计算,并提议一个新的动态FPN(DyFPN) 。DyFPN的输出特征将通过根据动态定位操作使用适应性选择的分支来计算。因此,拟议方法可以提供更高效的动态推导力,使精确度和计算成本之间实现更好的交易。在MS-CO基准上进行的广泛实验表明,拟议的DyFPN大大改进了计算资源的最佳分配。例如,用DPN取代FPN的高级性能,同时减少其大约40%的性能。

0
下载
关闭预览

相关内容

Pyramid is a small, fast, down-to-earth Python web application development framework.
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
11+阅读 · 2019年4月15日
Panoptic Feature Pyramid Networks
Arxiv
3+阅读 · 2019年1月8日
Scale-Aware Trident Networks for Object Detection
Arxiv
4+阅读 · 2019年1月7日
Arxiv
6+阅读 · 2018年7月9日
VIP会员
相关VIP内容
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Top
微信扫码咨询专知VIP会员