Graph dynamical systems (GDS) model dynamic processes on a (static) graph. Stochastic GDS has been used for network-based epidemics models such as the contact process and the reversible contact process. In this paper, we consider stochastic GDS that are also continuous-time Markov processes (CTMP), whose transition rates are linear functions of some dynamics parameters $\theta$ of interest (i.e., healing, exogeneous, and endogeneous infection rates). Our goal is to estimate $\theta$ from a single, finite-time, continuously observed trajectory of the CTMP. Parameter estimation of CTMP is challenging when the state space is large; for GDS, the number of Markov states are \emph{exponential} in the number of nodes of the graph. We showed that holding classes (i.e., Markov states with the same holding time distribution) give efficient partitions of the state space of GDS. We derived an upperbound on the number of holding classes for the contact process, which is polynomial in the number of nodes. We utilized holding classes to solve a smaller system of linear equations to find $\theta$. Experimental results show that finding reasonable results can be achieved even for short trajectories, particularly for the contact process. In fact, trajectory length does not significantly affect estimation error.
翻译:在(静态)图示上, 图像动态系统(GDS) 模型动态过程。 软性 GDS 已经用于基于网络的流行病模型, 如接触过程和可逆性接触过程。 在本文中, 我们认为, 随机性 GDS 也是连续时间的 Markov 进程(CTMP CTMP 进程), 其过渡率是某些动态参数的线性函数 $\theta$( 即愈合、 外源和内源性感染率 ) 。 我们的目标是从一个单一的、 定时、 持续观察到的CTMP 轨迹轨迹中估算$。 当状态空间很大时, 对CTMP 的参数估算具有挑战性; 对于 GDS 来说, Markov 州的数量是连续时间的 Markov 进程( CTDS CTDS 进程), 其过渡率是某些动态参数参数的线性函数 。 我们显示, 持有类( 即持有相同的持有时间分布) 能够有效分配 GDS 的状态空间。 我们从接触过程的组数上得出了一个上限,,, 特别是 IP 直径值 直径对 直径 直径 直径 直方方方 的结果 。 我们显示 。 的 的 的 。 。 直方 的 直方 的 的 直方 。</s>