项目名称: 机械合金化Nb-Al非平衡相中Nb3Al超导体析出机理研究

项目编号: No.51302224

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 潘熙锋

作者单位: 西北有色金属研究院

项目金额: 25万元

中文摘要: 与Nb3Sn相比,Nb3Al具有非常高的超导转变温度、上临界场和临界电流密度,以及优良的应力-应变容许特性,因此在高场超导磁体应用上有着巨大潜力。由于成相条件苛刻,目前高性能Nb3Al超导体须通过2000℃快热快冷得到晶粒细小的非平衡Nb(Al)ss过饱和固溶体,以及低温退火获得。本项目提出利用机械合金化制备Nb-Al非平衡相,结合粉末装管法和低温热处理制备Nb3Al线材路线。通过前期研究,我们成功制备了首根机械合金化Nb3Al超导线材,但由于缺乏对Nb3Al相形成过程研究,制备的超导体性能仍然较低。因此,本项目拟利用高分辨透射电镜和原位中子衍射等手段,开展机械合金化过程中Nb-Al非平衡相微观结构演变规律以及Nb3Al超导相析出机理的研究;并通过合金元素添加调节Nb3Al相的析出,以及超导体的晶粒连接和磁通钉扎机制;解决机械合金化手段制备高性能Nb3Al超导材料过程中的关键基础科学问题。

中文关键词: 低温超导线材;A15超导体;Nb3Al;机械合金化;临界电流密度

英文摘要: Due to with excellent Tc, Hc2 and Jc properties as well as good strain-stress tolerance, Nb3Al superconductor is thought as a very promising candidate at the high-field superconducting magnets application. However, because of its phase formation conditions limit, Nb3Al superconductor with good performance must be prepared by the rapid heating and quenching approach up to 2000 ℃ for obtaining metastable Nb(Al)ss supersaturated solid solution with fine grains, and then Nb3Al phase precipitates after a low-temperature heat-treatment. In this project, it was proposed to develop high-performance Nb3Al wires by using mechanical alloying method to make metastable Nb-Al nonequilibrium phase and with the powder-in tube and low-temperature annealing process. By our previous efforts, the first mechanical-alloyed Nb3Al superconducting wire was successfully fabricated; but since the formation mechnism of Nb3Al phase kept unknown,its superconducting propeties was still low. Therefore, this project aims to clarify the microstructure evolution process of metastable Nb-Al nonequilibrium phase and the precipitation mechanism of Nb3Al superconducting phase by high-resolution transmission electron microscope and in-situ neutron diffraction method,and also researches the role of the added alloying-elements in adjusting the precipita

英文关键词: Low-teperature superconducting wire;A15 superconductor;Niobium three Aluminium;mechanical alloying;critical current density

成为VIP会员查看完整内容
0

相关内容

专知会员服务
24+阅读 · 2021年9月10日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
36+阅读 · 2021年6月6日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
年前你想攒钱买什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月19日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
27+阅读 · 2018年4月12日
小贴士
相关资讯
年前你想攒钱买什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月19日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员