As robotic systems continue to address emerging issues in areas such as logistics, mobility, manufacturing, and disaster response, it is increasingly important to rapidly generate safe and energy-efficient trajectories. In this article, we present a new approach to plan energy-optimal trajectories through cluttered environments containing polygonal obstacles. In particular, we develop a method to quickly generate optimal trajectories for a double-integrator system, and we show that optimal path planning reduces to an integer program. To find an efficient solution, we present a distance-informed prefix search to efficiently generate optimal trajectories for a large class of environments. We demonstrate that our approach, while matching the performance of RRT* and Probabilistic Road Maps in terms of path length, outperforms both in terms of energy cost and computational time by up to an order of magnitude. We also demonstrate that our approach yields implementable trajectories in an experiment with a Crazyflie quadrotor.
翻译:随着机器人系统继续处理物流、流动、制造和救灾等领域的新问题,迅速产生安全和节能的轨迹越来越重要。在本篇文章中,我们提出了一个新方法,通过包含多边形障碍的杂乱环境规划最佳能源轨迹。特别是,我们开发了一种方法,为双集成器系统快速生成最佳轨迹,并显示最佳路径规划会降低到一个整数程序。为了找到有效的解决方案,我们进行了远程知情的前缀搜索,以高效地为大型环境生成最佳轨迹。我们展示了我们的方法,在匹配RRT* 和概率路线图在路径长度方面的性能的同时,在能源成本和计算时间方面均超过一个数量级。我们还展示了我们的方法在与疯狂法利石化器的实验中产生可执行的轨迹。