Predicting the position of a vessel at a specific time in the future is at the core of many maritime applications. The Automatic Identification System (AIS) provides rich information to enable this task. However, vessel trajectory forecasting using AIS data is challenging, even for modern machine learning/deep learning models, because motion data in general, and AIS data in particular, are complex and multimodal. In this paper, we tackle those difficulties by introducing a novel discrete, high-dimensional representation of AIS data and a new loss function to explicitly account for heterogeneity and multimodality. The proposed model -- referred to as TrAISformer -- is a modified transformer network that extracts long-term correlations of AIS trajectories in the proposed enriched space to forecast the positions of vessels after several hours. We report experimental results on real, public AIS data. TrAISformer significantly outperforms state-of-the-art methods and reaches a mean prediction performance below 10 nautical miles up to ~10 hours.
翻译:在未来某个特定时间预测船只的位置是许多海洋应用的核心。自动识别系统(自动识别系统)提供了丰富信息,以完成这项任务。然而,使用AIS数据的船舶轨迹预测,即使是现代机器学习/深学习模型,也是具有挑战性的,因为一般的运动数据,特别是AIS数据,都是复杂和多式的。在本文件中,我们通过采用新型的离散、高维的AIS数据表述和新的损失功能,明确说明异质和多式联运,来解决这些困难。拟议的模型 -- -- 称为TRAISExender -- -- 是一个经过改造的变压器网络,在拟议的浓缩空间中提取AIS轨迹的长期相关性,以便在数小时后预测船只的位置。我们报告关于实际的、公开的AIS数据的实验结果。TrAIS的实验结果大大超越了最先进的方法,并达到10海里以下的平均预测性表现。