项目名称: 自组装太阳能电池(二)

项目编号: No.91227112

项目类型: 重大研究计划

立项/批准年度: 2013

项目学科: 物理化学

项目作者: 詹传郎

作者单位: 中国科学院化学研究所

项目金额: 75万元

中文摘要: 天然光合作用体系是自然界利用光能的典范,其高度有序的自组装超分子结构是实现高效光电转换的重要基础。本申请以太阳能利用与转化为功能导向,选取高光敏响应的有机半导体单元和可控组装引导单元,设计合成分子异质结与纳米异质结组装基元;建立分子可控组装新方法,构筑电势梯度及电荷定向分离与转移通道,实现高吸光效率、宽光谱覆盖和高效的电荷分离;在透明导电玻璃(TCO)表面上,组装分子/纳米异质结的阵列化结构,构筑垂直于TCO玻璃表面的一维pi-pi堆积及载流子双传输通道,实现载流子定向、高效地传输;通过电荷定向分离与转移通道、载流子双传输通道和电势梯度的构筑,模拟天然光合作用体系实现高效光电转换的结构特性,构筑具有光电转换性能的可控组装新体系,开拓实现高效光电转换的新途径,研制自组装太阳能电池;在维纳层次上,原位关联研究自组装结构、阵列化结构与光电转换性能,建立自组装太阳能电池的理论模型和基本原理。

中文关键词: 有机太阳电池;聚集结构;激子分离;载流子传输;光电转换

英文摘要: The highly efficient photon-to-electron conversion in Photosynthesis is deeply related with the highly ordered supramolecular hierarchical structures, which are self-assembled under direction of the Photosynthetic proteins. In this proposal, we first design a series of new building blocks, namely molecular heterojunctions and nano-heterojunctions by covalently linking both the structural directing units and the n-type and p-type organic semiconductors, both having high molar extinction coefficients and broad absorption range covering the near IR region of the solar spectrum. We then develop new approaches to control the self-assembly of these molecular/nano-heterojunctions, constructing electron-transfer chains and redox-gradient along the electron-transfer chain to carry out the unidirectional electron-transfer and highly efficient charge-seperation. Furthermore, we develop new methods to prepare the nano-arrays of the molecular and nano-heterojunctions on the transparent conductive oxides (TCO) to achieve highly ordered one-dimensional pi-pi stacking of the n-type and p-type organic semiconductors seperately and the double-cables for the positive and negative charge carriers to transport highly efficiently across the active layer. Accordingly, we aim to mimic the highly ordered hierarchical structures through

英文关键词: organic solar cell;aggregates;exciton separation;carrier transport;photovoltaics

成为VIP会员查看完整内容
0

相关内容

5G赋能,民用引领,无人机产业迎来新变革,35页报告
专知会员服务
37+阅读 · 2022年3月20日
工业人工智能驱动的流程工业智能制造
专知会员服务
99+阅读 · 2022年3月9日
中国信通院《5G应用创新发展白皮书》
专知会员服务
32+阅读 · 2022年3月9日
制造业数字化转型路线图,67页pdf
专知会员服务
76+阅读 · 2021年10月11日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
63+阅读 · 2021年7月1日
智慧城市白皮书(2021年)
专知会员服务
177+阅读 · 2021年4月24日
专知会员服务
109+阅读 · 2021年4月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
小贴士
相关VIP内容
5G赋能,民用引领,无人机产业迎来新变革,35页报告
专知会员服务
37+阅读 · 2022年3月20日
工业人工智能驱动的流程工业智能制造
专知会员服务
99+阅读 · 2022年3月9日
中国信通院《5G应用创新发展白皮书》
专知会员服务
32+阅读 · 2022年3月9日
制造业数字化转型路线图,67页pdf
专知会员服务
76+阅读 · 2021年10月11日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
63+阅读 · 2021年7月1日
智慧城市白皮书(2021年)
专知会员服务
177+阅读 · 2021年4月24日
专知会员服务
109+阅读 · 2021年4月7日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员