Active Directory (AD) is the default security management system for Windows domain networks. We study a Stackelberg game model between one attacker and one defender on an AD attack graph. The attacker initially has access to a set of entry nodes. The attacker can expand this set by strategically exploring edges. Every edge has a detection rate and a failure rate. The attacker aims to maximize their chance of successfully reaching the destination before getting detected. The defender's task is to block a constant number of edges to decrease the attacker's chance of success. We show that the problem is #P-hard and, therefore, intractable to solve exactly. We convert the attacker's problem to an exponential sized Dynamic Program that is approximated by a Neural Network (NN). Once trained, the NN provides an efficient fitness function for the defender's Evolutionary Diversity Optimisation (EDO). The diversity emphasis on the defender's solution provides a diverse set of training samples, which improves the training accuracy of our NN for modelling the attacker. We go back and forth between NN training and EDO. Experimental results show that for R500 graph, our proposed EDO based defense is less than 1% away from the optimal defense.
翻译:活动目录 (AD) 是 Windows 域网的默认安全管理系统 。 我们在 AD 攻击图形上研究一个攻击者与一个捍卫者之间的 Stackelberg 游戏模型。 攻击者最初可以访问一组输入节点。 攻击者可以通过战略探索边缘来扩大这个组合。 每个边缘都有探测率和故障率。 攻击者的目标是在被探测到之前最大限度地增加成功到达目的地的机会。 捍卫者的任务是阻断固定数量的边缘以减少攻击者成功机会。 我们显示问题在于# P- 硬, 因此难以完全解决。 我们把攻击者的问题转换成一个指数级规模的动态程序, 以神经网络( NN) 为近似值。 攻击者可以通过战略探索边缘来扩大这个组合。 每个边缘都有一个有效的健身功能。 攻击者解决方案的多样化重点提供了一套培训样本, 提高我们NN 模拟攻击者的培训准确性。 我们从 NN 训练到 EDO 之间, 我们从 实验结果显示, 最优的防御为 R500 的 EDO 显示, 以 最佳防御为 的 EDO 1 。