We contribute to fulfil the long-lasting gap in the understanding of the spatial search with multiple marked vertices. The theoretical framework is that of discrete-time quantum walks (QW), \textit{i.e.} local unitary matrices that drive the evolution of a single particle on the lattice. QW based search algorithms are well understood when they have to tackle the fundamental problem of finding only one marked element in a $d-$dimensional grid and it has been proven they provide a quadratic advantage over classical searching protocols. However, once we consider to search more than one element, the behaviour of the algorithm may be affected by the spatial configuration of the marked elements and even the quantum advantage is no longer guaranteed. Here our main contribution is threefold~: (i)~we provide \textit{sufficient conditions for optimality} for a multi-items QWSearch algorithm~; (ii)~we provide analytical evidences that \textit{almost, but not all} spatial configurations with multiple marked elements are optimal; and (iii)~we numerically show that the computational advantage with respect to the classical counterpart is not always certain and it does depend on the proportion of searched elements over the total number of grid points.
翻译:我们致力于用多标记的顶端来填补在理解空间搜索方面的长期差距。 理论框架是驱使拉蒂塞上单一粒子进化的离散时间量子漫步( QW) 、\ textit{ i. e.} 本地单一矩阵。 以QW为基础的搜索算法,当它们必须解决在美元- 维格网格中只找到一个标记元素这一根本问题,而且事实证明它们为古典搜索协议提供了四级优势。 但是, 一旦我们考虑搜索不止一个元素, 算法的行为可能受到标记元素的空间配置的影响, 甚至量子优势也不再有保障。 我们在这方面的主要贡献是三重 ~ (i) ~ 我们为多项 QWSearch 算法提供\ textit{ 充分的最佳条件~ ; (ii) 我们提供分析证据,说明具有多种标记元素的空间配置是最佳的; 以及 (iii) ~ 我们从数字上显示,相对于古典对等方位数的计算优势并非一定的。