We study the capacity of entanglement as an alternative to entanglement entropies in estimating the degree of entanglement of quantum bipartite systems over fermionic Gaussian states. In particular, we derive the exact and asymptotic formulas of average capacity of two different cases - with and without particle number constraints. For the later case, the obtained formulas generalize some partial results of average capacity in the literature. The key ingredient in deriving the results is a set of new tools for simplifying finite summations developed very recently in the study of entanglement entropy of fermionic Gaussian states.
翻译:我们研究缠绕的能力,以替代缠绕的动脉,以估计在高斯河各州之间的量子双边系统缠绕程度。特别是,我们得出两种不同情况的平均容量的精确和无药可依的公式——有粒子数限制,也有没有粒子数限制。在后一种情况下,所获得的公式概括了文献中平均容量的某些部分结果。得出结果的关键因素是一套简化最近研究高斯河各州的紧凑性缠绕作用研究中开发的有限总和的新工具。