Gaussian processes are widely employed as versatile modelling and predictive tools in spatial statistics, functional data analysis, computer modelling and diverse applications of machine learning. They have been widely studied over Euclidean spaces, where they are specified using covariance functions or covariograms for modelling complex dependencies. There is a growing literature on Gaussian processes over Riemannian manifolds in order to develop richer and more flexible inferential frameworks for non-Euclidean data. While numerical approximations through graph representations have been well studied for the Mat\'ern covariogram and heat kernel, the behaviour of asymptotic inference on the parameters of the covariogram has received relatively scant attention. We focus on the asymptotic inference for Gaussian processes constructed over compact Riemannian manifolds. Building upon the recently introduced Mat\'ern covariogram on a compact Riemannian manifold, we employ formal notions and conditions for the equivalence of two Mat\'ern Gaussian random measures on compact manifolds to derive the parameter that is identifiable, also known as the microergodic parameter, and formally establish the consistency of the maximum likelihood estimate and the asymptotic optimality of the best linear unbiased predictor. The circle is studied as a specific example of compact Riemannian manifolds with numerical experiments to illustrate and corroborate the theory.


翻译:高斯过程被广泛应用于空间统计学、函数数据分析、计算机建模和各种机器学习应用作为多功能建模和预测工具。它们在欧几里德空间上广泛研究,其中使用协方差函数或协方差函数来建模复杂的依赖关系。 随着大量非欧几里德数据的出现,关于在紧致里曼流形上的高斯过程的研究越来越多,以便针对非欧几里德数据开发更丰富和灵活的推理框架。虽然通过图形表示的数值近似方法已经对Matérn协方差函数和热核进行了研究,但协方差函数参数的渐近推理行为仍然受到相对较少的关注。我们专注于构建在紧致里曼流形上的高斯过程的渐近推理。基于最近在紧致里曼流形上引入的Matérn协方差函数,我们采用正式的概念和条件来等价于两个Matérn高斯随机测度,以得出可识别的参数,也被称为微观马尔可夫参数,并正式建立最大似然估计的一致性和最优线性无偏估计器的渐近最优性。特定于研究圆作为紧致里曼流形的示例,并进行数值实验证明和证实理论。

0
下载
关闭预览

相关内容

高斯过程(Gaussian Process, GP)是概率论和数理统计中随机过程(stochastic process)的一种,是一系列服从正态分布的随机变量(random variable)在一指数集(index set)内的组合。 高斯过程中任意随机变量的线性组合都服从正态分布,每个有限维分布都是联合正态分布,且其本身在连续指数集上的概率密度函数即是所有随机变量的高斯测度,因此被视为联合正态分布的无限维广义延伸。高斯过程由其数学期望和协方差函数完全决定,并继承了正态分布的诸多性质
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员