A burgeoning line of research leverages deep neural networks to approximate the solutions to high dimensional PDEs, opening lines of theoretical inquiry focused on explaining how it is that these models appear to evade the curse of dimensionality. However, most prior theoretical analyses have been limited to linear PDEs. In this work, we take a step towards studying the representational power of neural networks for approximating solutions to nonlinear PDEs. We focus on a class of PDEs known as \emph{nonlinear elliptic variational PDEs}, whose solutions minimize an \emph{Euler-Lagrange} energy functional $\mathcal{E}(u) = \int_\Omega L(x, u(x), \nabla u(x)) - f(x) u(x)dx$. We show that if composing a function with Barron norm $b$ with partial derivatives of $L$ produces a function of Barron norm at most $B_L b^p$, the solution to the PDE can be $\epsilon$-approximated in the $L^2$ sense by a function with Barron norm $O\left(\left(dB_L\right)^{\max\{p \log(1/ \epsilon), p^{\log(1/\epsilon)}\}}\right)$. By a classical result due to Barron [1993], this correspondingly bounds the size of a 2-layer neural network needed to approximate the solution. Treating $p, \epsilon, B_L$ as constants, this quantity is polynomial in dimension, thus showing neural networks can evade the curse of dimensionality. Our proof technique involves neurally simulating (preconditioned) gradient in an appropriate Hilbert space, which converges exponentially fast to the solution of the PDE, and such that we can bound the increase of the Barron norm at each iterate. Our results subsume and substantially generalize analogous prior results for linear elliptic PDEs over a unit hypercube.
翻译:一种新兴的研究线利用深度神经网络逼近高维偏微分方程的解,开展了理论研究,主要集中于解释这些模型为何能够避免维度灾难。然而,先前的大部分理论分析都限于线性PDE。本文在研究神经网络用于逼近非线性PDE解的表征能力上迈出了一步。我们将重点放在称为\emph{非线性椭圆变分PDE}的PDE类别上,解的最小值为$\mathcal{E}(u) = \int_\Omega L(x,u(x),\nabla u(x))-f(x)u(x)dx$的\emph{Euler-Lagrange}能量泛函。我们证明,如果将一个Barron范数为$b$的函数与$L$的偏导数组合起来,产生的Barron范数不超过$B_Lb^p$的函数可以$L^2$意义下 $\epsilon$ -逼近解,具有Barron范数$O \left( \left(dB_L\right)^{\max \{ p \log(1/ \epsilon), p^{\log(1/\epsilon)} \}} \right)$。根据Barron [1993]的经典结论,在一定范围内控制了2层神经网络逼近解所需的大小。将$p, \epsilon, B_L$视为常数时,此数量是与维度多项式相关的,从而表明神经网络可以避免维度灾难。我们的证明技术涉及在适当的Hilbert空间中神经仿真(预处理)梯度,它以指数速度收敛于PDE的解,并且可限制Barron范数在每一次迭代时的增长。我们的结果包含了并显著推广了之前针对单位超立方体上线性椭圆PDE的类似结果。