We propose HyperDynamics, a dynamics meta-learning framework that conditions on an agent's interactions with the environment and optionally its visual observations, and generates the parameters of neural dynamics models based on inferred properties of the dynamical system. Physical and visual properties of the environment that are not part of the low-dimensional state yet affect its temporal dynamics are inferred from the interaction history and visual observations, and are implicitly captured in the generated parameters. We test HyperDynamics on a set of object pushing and locomotion tasks. It outperforms existing dynamics models in the literature that adapt to environment variations by learning dynamics over high dimensional visual observations, capturing the interactions of the agent in recurrent state representations, or using gradient-based meta-optimization. We also show our method matches the performance of an ensemble of separately trained experts, while also being able to generalize well to unseen environment variations at test time. We attribute its good performance to the multiplicative interactions between the inferred system properties -- captured in the generated parameters -- and the low-dimensional state representation of the dynamical system.
翻译:我们提出超强动态动态动态元学习框架,该动态元学习框架为某一物剂与环境的相互作用提供条件,并选用其视觉观测,根据动态系统的推断特性生成神经动态模型参数。环境的物理和视觉特性不属于低维状态的一部分,但影响其时间动态的物理和视觉特性则从互动历史和视觉观测中推断出来,并在生成参数中隐含地捕捉到。我们在一组物体推推力和移动任务上测试超超动态动态元;它超越了文献中适应环境变化的现有动态模型,即通过在高维观观测中学习动态,在经常性状态中捕捉该物剂的相互作用,或使用基于梯度的元性优化。我们还展示了我们的方法与另外受过培训的专家的组合性能相匹配,同时能够很好地在测试时间对看不见的环境变化进行概括。我们将其良好的性能归功于在生成参数中捕获的推断系统特性和动态系统的低维度表达方式之间的多复制性相互作用。