加入极市专业CV交流群,与6000+来自腾讯,华为,百度,北大,清华,中科院等名企名校视觉开发者互动交流!更有机会与李开复老师等大牛群内互动!
同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流。关注 极市平台 公众号 ,回复 加群,立刻申请入群~
作者:
来源:
简单做个今年ICLR上我个人觉得质量比较高的RL方向的工作总结。
有很多疏漏,漏了没看到的工作后续再补吧。
质量比较高的意思不是说都是高分工作,有的分数差异比较大的我也放上来了。
加了一些tranfer reinforcement learning有关的工作。
CM3: Cooperative Multi-goal Multi-stage Multi-agent Reinforcement Learning
链接:
https://openreview.net/forum?id=S1lEX04tPr¬eId=r1e0fqAaKr
Adapt-to-Learn: Policy Transfer in Reinforcement Learning
链接:
https://openreview.net/forum?id=ryeT10VKDH¬eId=S1lVR3-bqS
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning
链接:
https://openreview.net/forum?id=SJxbHkrKDH¬eId=ryxYvoLRYH
MULTIPOLAR: Multi-Source Policy Aggregation for Transfer Reinforcement Learning between Diverse Environmental Dynamics
链接:https://openreview.net/forum?id=Byx9p2EtDH
Intrinsic Motivation for Encouraging Synergistic Behavior
链接:
https://openreview.net/forum?id=SJleNCNtDH¬eId=SJxFBZDpYr
Two-player zero-sum extensive-games with imperfect information (TZIEG):
Posterior sampling for multi-agent reinforcement learning: solving extensive games with imperfect information
链接:
https://openreview.net/forum?id=Syg-ET4FPS¬eId=BkgacWb0cS
Human Interaction:
Simplified Action Decoder for Deep Multi-Agent Reinforcement Learning
链接:
https://openreview.net/forum?id=B1xm3RVtwB¬eId=Bkl2ONldFr
Communication:
Graph Convolutional Reinforcement Learning
链接:
https://openreview.net/forum?id=HkxdQkSYDB¬eId=SygTyGcOcr
Learning Nearly Decomposable Value Functions Via Communication Minimization
链接:
https://openreview.net/forum?id=HJx-3grYDB¬eId=SygnB7pe5S
Multi-agent Reinforcement Learning for Networked System Control
链接:https://openreview.net/forum?id=Syx7A3NFvH
Learning Structured Communication for Multi-agent Reinforcement Learning
链接:https://openreview.net/forum?id=BklWt24tvH
Interaction Modelling:
Promoting Coordination through Policy Regularization in Multi-Agent Deep Reinforcement Learning
链接:https://openreview.net/forum?id=BkggGREKvS
Training, Exploration:
A Generalized Training Approach for Multiagent Learning
链接:
https://openreview.net/forum?id=Bkl5kxrKDr¬eId=r1xBh9CaYS
Influence-Based Multi-Agent Exploration
链接:
https://openreview.net/forum?id=BJgy96EYvr¬eId=HJlVKGuwdH
Learning Expensive Coordination: An Event-Based Deep RL Approach
链接:https://openreview.net/forum?id=ryeG924twB
Imitation, Inverse:
Asynchronous Multi-Agent Generative Adversarial Imitation Learning
链接:
https://openreview.net/forum?id=Syx33erYwH¬eId=r1l9cYFddS
Multi-Agent Interactions Modeling with Correlated Policies
链接:https://openreview.net/forum?id=B1gZV1HYvS
-End-
*延伸阅读
CV细分方向交流群
添加极市小助手微信(ID : cv-mart),备注:研究方向-姓名-学校/公司-城市(如:目标检测-小极-北大-深圳),即可申请加入目标检测、目标跟踪、人脸、工业检测、医学影像、三维&SLAM、图像分割等极市技术交流群(已经添加小助手的好友直接私信),更有每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流,一起来让思想之光照的更远吧~
△长按添加极市小助手
△长按关注极市平台
觉得有用麻烦给个在看啦~