Most classical (non-spiking) neural network models disregard internal neuron dynamics and treat neurons as simple input integrators. However, biological neurons have an internal state governed by complex dynamics that plays a crucial role in learning, adaptation and the overall network activity and behaviour. This paper presents the Membrane Potential and Activation Threshold Homeostasis (MPATH) neuron model, which combines several biologically inspired mechanisms to efficiently simulate internal neuron dynamics with a single parameter analogous to the membrane time constant in biological neurons. The model allows neurons to maintain a form of dynamic equilibrium by automatically regulating their activity when presented with fluctuating input. One consequence of the MPATH model is that it imbues neurons with a sense of time without recurrent connections, paving the way for modelling processes that depend on temporal aspects of neuron activity. Experiments demonstrate the model's ability to adapt to and continually learn from its input.
翻译:大多数古典(非喷射)神经网络模型无视内部神经动态,将神经元作为简单的输入聚合器处理。然而,生物神经元的内部状态是由复杂的动态调节的,在学习、适应和整个网络活动和行为方面发挥着关键作用。本文介绍了Membrane潜力和活性临界软软软体神经模型,该模型将若干具有生物启发的机制结合起来,以有效模拟内部神经动态,其单一参数类似于生物神经元的膜时常数。该模型允许神经元保持一种动态平衡形式,在以波动输入的方式自动调节其活动。该模型的一个后果是,它将神经元注入有时间感的神经元,没有经常性连接,为取决于神经活动时间方面的模拟进程铺平了道路。实验表明该模型能够适应并不断从其输入中学习。