Frame reconstruction (current or future frame) based on Auto-Encoder (AE) is a popular method for video anomaly detection. With models trained on the normal data, the reconstruction errors of anomalous scenes are usually much larger than those of normal ones. Previous methods introduced the memory bank into AE, for encoding diverse normal patterns across the training videos. However, they are memory-consuming and cannot cope with unseen new scenarios in the testing data. In this work, we propose a dynamic prototype unit (DPU) to encode the normal dynamics as prototypes in real time, free from extra memory cost. In addition, we introduce meta-learning to our DPU to form a novel few-shot normalcy learner, namely Meta-Prototype Unit (MPU). It enables the fast adaption capability on new scenes by only consuming a few iterations of update. Extensive experiments are conducted on various benchmarks. The superior performance over the state-of-the-art demonstrates the effectiveness of our method.
翻译:以 Auto- Encoder (AE) 为基础的框架重建( 当前或未来框架) 是一种流行的视频异常检测方法。 有了以正常数据为主的模型, 异常场景的重建错误通常比正常场景大得多。 以前的方法将记忆库引入 AE, 用于将培训视频中不同的正常模式编码。 但是, 它们消耗记忆, 无法在测试数据中应对未知的新情景 。 在这项工作中, 我们提出一个动态原型单元( DPU), 将正常动态实时编码为原型, 免去额外的记忆成本 。 此外, 我们向 DPU 引入元学习, 以形成一个新的微小的正常学习器, 即Meta- Prototype Unit( MPU MPU ) 。 它只用少量的迭代更新来使得新场景快速适应能力。 在各种基准上进行广泛的实验。 最先进的技术表现展示了我们的方法的有效性 。