In this work, we investigate online mechanisms for trading time-sensitive valued data. We adopt a continuous function $d(t)$ to represent the data value fluctuation over time $t$. Our objective is to design an \emph{online} mechanism achieving \emph{truthfulness} and \emph{revenue-competitiveness}. We first prove several lower bounds on the revenue competitive ratios under various assumptions. We then propose several online truthful auction mechanisms for various adversarial models, such as a randomized observe-then-select mechanism $\mathcal{M}_1$ and prove that it is \textit{truthful} and $\Theta(\log n)$-competitive under some assumptions. Then we present an effective truthful weighted-selection mechanism $\mathcal{M'}_W$ by relaxing the assumptions on the sizes of the discount-classes. We prove that it achieves a competitive ratio $\Theta(n\log n)$ for any known non-decreasing discount function $d(t)$, and the number of buyers in each discount class $n_c \ge 2$. When the optimum expected revenue $OPT_1$ can be estimated within a constant factor, i.e. $c_0 \cdot OPT_1 \le Z \le OPT_1 $ for some constant $c_0 \in(0,1)$, we propose a truthful online posted-price mechanism that achieves a constant competitive ratio $\frac{4}{c_0}$. Our extensive numerical evaluations demonstrate that our mechanisms perform very well in most cases.
翻译:在此工作中, 我们调查交易时间敏感值数据的在线机制 。 我们采用一个连续函数 $d( t) 美元 来代表数据值随时间变化 $t美元 。 我们的目标是根据某些假设设计一个实现\ emph{ truthity} 和\ emph{ venue- contractity} 的机制。 我们首先根据不同的假设, 证明收入竞争比率在不同的假设下有几个较低的限制。 我们然后为各种对抗模式提议几个在线真实的拍卖机制, 例如随机化的观察- 选择机制 $\ mathcal{M ⁇ 1$, 证明它代表了 textit{ true} 和 $\ ta( log n) 在某些假设下, 设计了一个有效的加权选择机制 $\ mathcal{ M\ $W$ 。 我们证明它达到了一个竞争性比率 $( n) 美元 (n\ log n美元) 的观察- 选择机制 美元, 并证明我们每类中最常值 的购买者数量 。 能够显示我们每类的固定值 $ 。