Our aim is to develop dynamic data structures that support $k$-nearest neighbors ($k$-NN) queries for a set of $n$ point sites in the plane in $O(f(n) + k)$ time, where $f(n)$ is some polylogarithmic function of $n$. The key component is a general query algorithm that allows us to find the $k$-NN spread over $t$ substructures simultaneously, thus reducing an $O(tk)$ term in the query time to $O(k)$. Combining this technique with the logarithmic method allows us to turn any static $k$-NN data structure into a data structure supporting both efficient insertions and queries. For the fully dynamic case, this technique allows us to recover the deterministic, worst-case, $O(\log^2n/\log\log n +k)$ query time for the Euclidean distance claimed before, while preserving the polylogarithmic update times. We adapt this data structure to also support fully dynamic \emph{geodesic} $k$-NN queries among a set of sites in a simple polygon. For this purpose, we design a shallow cutting based, deletion-only $k$-NN data structure. More generally, we obtain a dynamic planar $k$-NN data structure for any type of distance functions for which we can build vertical shallow cuttings. We apply all of our methods in the plane for the Euclidean distance, the geodesic distance, and general, constant-complexity, algebraic distance functions.
翻译:我们的目标是开发动态数据结构, 支持最接近邻居的美元( k$- NN) 询问平面上一组以美元( f( n) + k) 美元计时的点点点站点, 美元( n) 是美元( n) 的一些多元值函数 $n。 关键组件是一个一般查询算法, 使我们能够同时在$( t) 的亚结构中找到美元( k$- NN) 扩散, 从而将查询时间中的美元( tk) 术语降低到 $( k) 。 将这一技术与对数法相结合, 使我们能够将任何静态的美元( $( n) + k) 的数据结构转换成一个支持高效插入和查询的数据结构 。 对于完全动态的情况, 这个技术让我们重新恢复确定性、 最坏的情况, $( log2n) /\ log\ n log\ g) 的查询时间, 并保存所有对数( rologaric) 更新的时间。 我们将这个数据结构调整这个数据结构, 也支持完全动态\ emeph( lead) lead) rical) ridedededeal) 这样的数据结构, ricol- decol- creal- crecuding a precudeal- pricleglegleglegleglection a sal sal sal sal sal res a sal sals resmational res a res a rocumental sal sal 。