We introduce two new classes of measures of information for statistical experiments which generalise and subsume $\phi$-divergences, integral probability metrics, $\mathfrak{N}$-distances (MMD), and $(f,\Gamma)$ divergences between two or more distributions. This enables us to derive a simple geometrical relationship between measures of information and the Bayes risk of a statistical decision problem, thus extending the variational $\phi$-divergence representation to multiple distributions in an entirely symmetric manner. The new families of divergence are closed under the action of Markov operators which yields an information processing equality which is a refinement and generalisation of the classical data processing inequality. This equality gives insight into the significance of the choice of the hypothesis class in classical risk minimization.
翻译:我们引入了两类新的统计实验信息计量方法,这些统计实验概括并包含美元-美元-差价、整体概率度量、美元\mathfrak{N}-距离(MMD)和两种或两种以上分布之间差异(f,\Gamma)美元。这使我们能够在信息度量与统计决策问题对拜斯的风险之间得出简单的几何关系,从而将变价美元-差价代表方法扩大到完全对称方式的多种分布。在Markov操作者的行动下,新的差异家庭被关闭,从而产生了信息处理平等,这是对传统数据处理不平等的完善和概括。这种平等使我们深入地了解了在传统风险最小化中选择假设类别的重要性。