We construct quantum algorithms to compute the solution and/or physical observables of nonlinear ordinary differential equations (ODEs) and nonlinear Hamilton-Jacobi equations (HJE) via linear representations or exact mappings between nonlinear ODEs/HJE and linear partial differential equations (the Liouville equation and the Koopman-von Neumann equation). The connection between the linear representations and the original nonlinear system is established through the Dirac delta function or the level set mechanism. We compare the quantum linear systems algorithms based methods and the quantum simulation methods arising from different numerical approximations, including the finite difference discretisations and the Fourier spectral discretisations for the two different linear representations, with the result showing that the quantum simulation methods usually give the best performance in time complexity. We also propose the Schr\"odinger framework to solve the Liouville equation for the HJE, since it can be recast as the semiclassical limit of the Wigner transform of the Schr\"odinger equation. Comparsion between the Schr\"odinger and the Liouville framework will also be made.
翻译:我们通过线性表示式或非线性普通差分方程式(ODEs)和非线性汉密尔顿-贾科比等式(HJE)的直线表达式或非线性非线性ODE/HJE和线性部分差方程式(Liouville等式和Koopman-von Neumann等式)之间的精确映射法来计算非线性普通差方程式(ODEs)和/或物理观察。线性表示式和原非线性非线性系统之间的连接是通过Dirac delta 函数或水平设定机制建立的。我们比较了基于量性线性系统算法的方法和量性模拟方法,包括两个不同直线性表示式的有限差异和四光谱分解法,结果显示量性模拟方法通常在时间复杂性方面产生最佳的性能。我们还提议了Schr\"onger为HJE的Louville方程式的解算法框架,因为它可以重新表述成Schr\\\'dville 和Liville框架之间的半级界限。