We show that under minimal assumptions on a random vector $X\in\mathbb{R}^d$, and with high probability, given $m$ independent copies of $X$, the coordinate distribution of each vector $(\langle X_i,\theta \rangle)_{i=1}^m$ is dictated by the distribution of the true marginal $\langle X,\theta \rangle$. Formally, we show that with high probability, \[\sup_{\theta \in S^{d-1}} \left( \frac{1}{m}\sum_{i=1}^m \left|\langle X_i,\theta \rangle^\sharp - \lambda^\theta_i \right|^2 \right)^{1/2} \leq c \left( \frac{d}{m} \right)^{1/4},\] where $\lambda^{\theta}_i = m\int_{(\frac{i-1}{m}, \frac{i}{m}]} F_{ \langle X,\theta \rangle }^{-1}(u)^2 \,du$ and $a^\sharp$ denotes the monotone non-decreasing rearrangement of $a$. The proof follows from the optimal estimate on the worst Wasserstein distance between a marginal of $X$ and its empirical counterpart, $\frac{1}{m} \sum_{i=1}^m \delta_{\langle X_i, \theta \rangle}$. We then use the accurate information on the structures of the vectors $(\langle X_i,\theta \rangle)_{i=1}^m$ to construct the first non-gaussian ensemble that yields the optimal estimate in the Dvoretzky-Milman Theorem: the ensemble exhibits almost Euclidean sections in arbitrary normed spaces of the same dimension as the gaussian embedding -- despite being very far from gaussian (in fact, it happens to be heavy-tailed).
翻译:在随机向量 $X\ in\ mathb{R\\ d$的最小假设下,如果以美元独立副本 $X美元为最高概率, 每种向量的坐标分布由真实的边际 $\ lcangle X,\theta\\\\\\rangle=1\ m$的分布决定。 形式上, 我们以高概率显示,\\\\\\\\ t\\\ tleta\ max m\\\\\ lexxx m\\\ lexxxl=lexl=lexxl=lxxxl=lxxxl=lxxxxxlxxxlxxlxxlxxlxlxxlxxlxlxxlxlxxlxxlxlxxlxlxlxxxlxxlxxxxlxxlxxxlxxxxxlxxxlxxlxxlxxxxlxxxxlxxxxxxxxxxxxxxxxxlxxxxxlxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxlllllxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxllllllllll