Human affective behavior analysis focuses on analyzing human expressions or other behaviors to enhance the understanding of human psychology. The CVPR 2023 Competition on Affective Behavior Analysis in-the-wild (ABAW) is dedicated to providing high-quality and large-scale Aff-wild2 for the recognition of commonly used emotion representations, such as Action Units (AU), basic expression categories(EXPR), and Valence-Arousal (VA). The competition is committed to making significant strides in improving the accuracy and practicality of affective analysis research in real-world scenarios. In this paper, we introduce our submission to the CVPR 2023: ABAW5. Our approach involves several key components. First, we utilize the visual information from a Masked Autoencoder(MAE) model that has been pre-trained on a large-scale face image dataset in a self-supervised manner. Next, we finetune the MAE encoder on the image frames from the Aff-wild2 for AU, EXPR and VA tasks, which can be regarded as a static and uni-modal training. Additionally, we leverage the multi-modal and temporal information from the videos and implement a transformer-based framework to fuse the multi-modal features. Our approach achieves impressive results in the ABAW5 competition, with an average F1 score of 55.49\% and 41.21\% in the AU and EXPR tracks, respectively, and an average CCC of 0.6372 in the VA track. Our approach ranks first in the EXPR and AU tracks, and second in the VA track. Extensive quantitative experiments and ablation studies demonstrate the effectiveness of our proposed method.
翻译:人类情感行为分析致力于分析人类表情或其他行为,以加强对人类心理的理解。CVPR 2023 收集的 Affective Behavior Analysis in-the-wild (ABAW) 竞赛数据集致力于提供用于识别常用情感表达方式的高质量和大规模的数据,如动作单元 (AU)、基本表情类别 (EXPR) 及所有性-唤起(VA)等。该竞赛致力于在真实场景下取得情感分析研究的精确性和可行性方面的显著进展。本文介绍了我们参与 CVPR 2023 ABAW5 竞赛的方法。我们的方法涉及几个关键组件。首先,我们利用在大规模面部图像数据集上进行自监督训练的 Masked Autoencoder (MAE) 模型从视觉角度提取信息。接下来,我们在 AU、EXPR 和 VA 任务的图像帧上微调 MAE 编码器,可视为静态且单模态的训练。此外,我们利用视频中的多模态和时间信息,并实现基于 Transformer 的框架来融合多模态特征。我们的方法在 ABAW5 竞赛中取得了令人印象深刻的结果,在 AU 和 EXPR 轨道上的平均 F1 值分别为 55.49\% 和 41.21\%,在 VA 轨道上的平均 CCC 值为 0.6372。我们的方法在 EXPR 和 AU 轨道上排名第一,在 VA 轨道上排名第二。广泛的定量实验和消融研究证明了我们所提出方法的有效性。