We present a new nonparametric mixture-of-experts model for multivariate regression problems, inspired by the probabilistic $k$-nearest neighbors algorithm. Using a conditionally specified model, predictions for out-of-sample inputs are based on similarities to each observed data point, yielding predictive distributions represented by Gaussian mixtures. Posterior inference is performed on the parameters of the mixture components as well as the distance metric using a mean-field variational Bayes algorithm accompanied with a stochastic gradient-based optimization procedure. The proposed method is especially advantageous in settings where inputs are of relatively high dimension in comparison to the data size, where input--output relationships are complex, and where predictive distributions may be skewed or multimodal. Computational studies on two synthetic datasets and one dataset comprising dose statistics of radiation therapy treatment plans show that our mixture-of-experts method outperforms a Gaussian process benchmark model both in terms of validation metrics and visual inspection.


翻译:我们提出了一个新的非参数专家混合模型,用于多变量回归问题,这种模型的灵感来自概率性美元最近的邻国算法。使用一个有条件指定的模型,对抽样输入的预测基于与每个观察数据点的相似性,产生高斯混合物代表的预测分布。根据混合成分的参数以及使用平均场变异波段算法的距离计量法,并辅之以一个随机梯度优化程序,对使用投入与数据大小相对高维、投入-产出关系复杂、预测分布可能偏斜或多式等环境特别有利。关于两个合成数据集和一个由辐射治疗计划剂量统计组成的数据集的计算研究表明,我们的混合专家方法在验证指标和直观检查方面都超越了高斯进程基准模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【UMD开放书】机器学习课程书册,19章227页pdf,带你学习ML
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员