This paper investigates limiting properties of eigenvalues of multivariate sample spatial-sign covariance matrices when both the number of variables and the sample size grow to infinity. The underlying p-variate populations are general enough to include the popular independent components model and the family of elliptical distributions. A first result of the paper establishes that the distribution of the eigenvalues converges to a deterministic limit that belongs to the family of generalized Marcenko-Pastur distributions. Furthermore, a new central limit theorem is established for a class of linear spectral statistics. We develop two applications of these results to robust statistics for a high-dimensional shape matrix. First, two statistics are proposed for testing the sphericity. Next, a spectrum-corrected estimator using the sample spatial-sign covariance matrix is proposed. Simulation experiments show that in high dimension, the sample spatial-sign covariance matrix provides a valid and robust tool for mitigating influence of outliers.


翻译:本文调查了当变量数和样本大小增长到无限时,多变量样本空间标志共变量矩阵的天体值限制特性。 基底的p- 变数群非常一般, 足以包括流行的独立元件模型和椭圆分布组。 本文的第一个结果确定, 源体值的分布会归结到属于通用 Marcenko- Pastur 分布组的确定性限值。 此外, 为一组线性光谱统计组制定了一个新的中心限值。 我们开发了两种应用这些结果的功能, 以用于高维形状矩阵的可靠统计数据。 首先, 提出了两种统计数据用于测试球度。 其次, 提出了使用样本空间标志共变量矩阵的频谱校定估计值矩阵。 模拟实验显示, 在高维度上, 样本空间标志共变量矩阵提供了有效而有力的工具, 用于减轻外星的影响 。

0
下载
关闭预览

相关内容

在概率论和统计学中,协方差矩阵(也称为自协方差矩阵,色散矩阵,方差矩阵或方差-协方差矩阵)是平方矩阵,给出了给定随机向量的每对元素之间的协方差。 在矩阵对角线中存在方差,即每个元素与其自身的协方差。
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员