This paper investigates limiting properties of eigenvalues of multivariate sample spatial-sign covariance matrices when both the number of variables and the sample size grow to infinity. The underlying p-variate populations are general enough to include the popular independent components model and the family of elliptical distributions. A first result of the paper establishes that the distribution of the eigenvalues converges to a deterministic limit that belongs to the family of generalized Marcenko-Pastur distributions. Furthermore, a new central limit theorem is established for a class of linear spectral statistics. We develop two applications of these results to robust statistics for a high-dimensional shape matrix. First, two statistics are proposed for testing the sphericity. Next, a spectrum-corrected estimator using the sample spatial-sign covariance matrix is proposed. Simulation experiments show that in high dimension, the sample spatial-sign covariance matrix provides a valid and robust tool for mitigating influence of outliers.
翻译:本文调查了当变量数和样本大小增长到无限时,多变量样本空间标志共变量矩阵的天体值限制特性。 基底的p- 变数群非常一般, 足以包括流行的独立元件模型和椭圆分布组。 本文的第一个结果确定, 源体值的分布会归结到属于通用 Marcenko- Pastur 分布组的确定性限值。 此外, 为一组线性光谱统计组制定了一个新的中心限值。 我们开发了两种应用这些结果的功能, 以用于高维形状矩阵的可靠统计数据。 首先, 提出了两种统计数据用于测试球度。 其次, 提出了使用样本空间标志共变量矩阵的频谱校定估计值矩阵。 模拟实验显示, 在高维度上, 样本空间标志共变量矩阵提供了有效而有力的工具, 用于减轻外星的影响 。