In recent years, person re-identification (re-id) catches great attention in both computer vision community and industry. In this paper, we propose a new framework for person re-identification with a triplet-based deep similarity learning using convolutional neural networks (CNNs). The network is trained with triplet input: two of them have the same class labels and the other one is different. It aims to learn the deep feature representation, with which the distance within the same class is decreased, while the distance between the different classes is increased as much as possible. Moreover, we trained the model jointly on six different datasets, which differs from common practice - one model is just trained on one dataset and tested also on the same one. However, the enormous number of possible triplet data among the large number of training samples makes the training impossible. To address this challenge, a double-sampling scheme is proposed to generate triplets of images as effective as possible. The proposed framework is evaluated on several benchmark datasets. The experimental results show that, our method is effective for the task of person re-identification and it is comparable or even outperforms the state-of-the-art methods.


翻译:近年来,在计算机视觉界和行业中,人们的重新定位(重新定位)引起人们的极大关注。在本文件中,我们提议了一个新的框架,通过使用进化神经网络(CNNs)进行三重深相似学习,重新定位(重新定位),使用三重输入,对网络进行培训:其中两人具有相同的类标签,而另一人则不同。目的是了解同一类内距离缩小的深度特征代表,同时尽可能扩大不同类别之间的距离。此外,我们联合对模型进行了六种不同数据集的培训,这与通常的做法不同——一个模型只是用一个数据集来培训,并且也在同一数据集上进行测试。然而,大量培训样本中可能存在的三重数据数量巨大,使得培训成为不可能。为了应对这一挑战,建议了一个双重抽样计划,以产生尽可能有效的三重图像。在几个基准数据集上对拟议框架进行了评估。实验结果表明,我们的方法对于人员重新定位的任务是有效的,而且它具有可比性,甚至超越了状态方法。

3
下载
关闭预览

相关内容

最新《深度学习行人重识别》综述论文,24页pdf
专知会员服务
80+阅读 · 2020年5月5日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员