This study was groundbreaking in its application of neural network models for nitrate management in the Recirculating Aquaculture System (RAS). A hybrid neural network model was proposed, which accurately predicted daily nitrate concentration and its trends using six water quality parameters. We conducted a 105-day aquaculture experiment, during which we collected 450 samples from five sets of RAS to train our model (C-L-A model) which incorporates Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and self-Attention. Furthermore, we obtained 90 samples from a standalone RAS as the testing data to evaluate the performance of the model in practical applications. The experimental results proved that the C-L-A model accurately predicted nitrate concentration in RAS and maintained good performance even with a reduced proportion of training data. We recommend using water quality parameters from the past 7 days to forecast future nitrate concentration, as this timeframe allows the model to achieve maximum generalization capability. Additionally, we compared the performance of the C-L-A model with three basic neural network models (CNN, LSTM, self-Attention) as well as three hybrid neural network models (CNN-LSTM, CNN-Attention, LSTM-Attention). The results demonstrated that the C-L-A model (R2=0.956) significantly outperformed the other neural network models (R2=0.901-0.927). Our study suggests that the utilization of neural network models, specifically the C-L-A model, could potentially assist the RAS industry in conserving resources for daily nitrate monitoring.
翻译:暂无翻译