Deep convolutional neural networks (DCNN for short) are vulnerable to examples with small perturbations. Improving DCNN's robustness is of great significance to the safety-critical applications, such as autonomous driving and industry automation. Inspired by the principal way that human eyes recognize objects, i.e., largely relying on the shape features, this paper first employs the edge detectors as layer kernels and designs a binary edge feature branch (BEFB for short) to learn the binary edge features, which can be easily integrated into any popular backbone. The four edge detectors can learn the horizontal, vertical, positive diagonal, and negative diagonal edge features, respectively, and the branch is stacked by multiple Sobel layers (using edge detectors as kernels) and one threshold layer. The binary edge features learned by the branch, concatenated with the texture features learned by the backbone, are fed into the fully connected layers for classification. We integrate the proposed branch into VGG16 and ResNet34, respectively, and conduct experiments on multiple datasets. Experimental results demonstrate the BEFB is lightweight and has no side effects on training. And the accuracy of the BEFB integrated models is better than the original ones on all datasets when facing FGSM, PGD, and C\&W attacks. Besides, BEFB integrated models equipped with the robustness enhancing techniques can achieve better classification accuracy compared to the original models. The work in this paper for the first time shows it is feasible to enhance the robustness of DCNNs through combining both shape-like features and texture features.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2021年7月20日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
21+阅读 · 2021年2月13日
The Matrix Calculus You Need For Deep Learning
Arxiv
12+阅读 · 2018年7月2日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
14+阅读 · 2021年7月20日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
21+阅读 · 2021年2月13日
The Matrix Calculus You Need For Deep Learning
Arxiv
12+阅读 · 2018年7月2日
Arxiv
22+阅读 · 2018年2月14日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员