In recent years, large-scale deep models have achieved great success, but the huge computational complexity and massive storage requirements make it a great challenge to deploy them in resource-limited devices. As a model compression and acceleration method, knowledge distillation effectively improves the performance of small models by transferring the dark knowledge from the teacher detector. However, most of the existing distillation-based detection methods mainly imitating features near bounding boxes, which suffer from two limitations. First, they ignore the beneficial features outside the bounding boxes. Second, these methods imitate some features which are mistakenly regarded as the background by the teacher detector. To address the above issues, we propose a novel Feature-Richness Score (FRS) method to choose important features that improve generalized detectability during distilling. The proposed method effectively retrieves the important features outside the bounding boxes and removes the detrimental features within the bounding boxes. Extensive experiments show that our methods achieve excellent performance on both anchor-based and anchor-free detectors. For example, RetinaNet with ResNet-50 achieves 39.7% in mAP on the COCO2017 dataset, which even surpasses the ResNet-101 based teacher detector 38.9% by 0.8%. Our implementation is available at https://github.com/duzhixing/FRS.


翻译:近年来,大型深层模型取得了巨大成功,但巨大的计算复杂性和大规模储存要求使在资源有限的装置中部署这些模型成为巨大的挑战。作为一种模型压缩和加速方法,知识蒸馏通过传授教师探测器的黑暗知识,有效地改进了小型模型的性能。然而,大多数现有的蒸馏法主要模仿捆绑箱附近的特征,这些特征有两种限制。首先,它们忽视了捆绑箱外的有益特征。第二,这些方法模仿了一些被教师探测器误认为背景的特征。为了解决上述问题,我们建议采用一种新的“特异性-精度评分”(FRS)方法来选择重要特征,提高蒸馏过程中的普遍可探测性。拟议方法有效地检索了捆绑箱外的重要特征,并消除了捆绑箱内的有害特征。广泛的实验表明,我们的方法在固定式和无固定式探测器上都取得了出色的性能。例如,RetinaNet-50的系统网络在CO2017/Richness中实现了39.7 % mAP,在GERCO90/REDRASHS上甚至已经检测了RES-DRA/DRASY。在GERMRVDRMDRM/RVSDRMDRVDRVDRV中,这是可以探测到的。

0
下载
关闭预览

相关内容

【AAAI2022】锚点DETR:基于transformer检测器的查询设计
专知会员服务
12+阅读 · 2021年12月31日
【CVPR2021】用于目标检测的通用实例蒸馏
专知会员服务
23+阅读 · 2021年3月22日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:EfficientNet、XLNet 论文及代码实现
LibRec智能推荐
5+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
9+阅读 · 2021年3月3日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
8+阅读 · 2018年1月12日
Arxiv
4+阅读 · 2016年12月29日
VIP会员
相关VIP内容
【AAAI2022】锚点DETR:基于transformer检测器的查询设计
专知会员服务
12+阅读 · 2021年12月31日
【CVPR2021】用于目标检测的通用实例蒸馏
专知会员服务
23+阅读 · 2021年3月22日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
LibRec 精选:EfficientNet、XLNet 论文及代码实现
LibRec智能推荐
5+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关论文
Arxiv
9+阅读 · 2021年3月3日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
8+阅读 · 2018年1月12日
Arxiv
4+阅读 · 2016年12月29日
Top
微信扫码咨询专知VIP会员