The Unsplittable Flow on a Path (UFP) problem has garnered considerable attention as a challenging combinatorial optimization problem with notable practical implications. Steered by its pivotal applications in power engineering, the present work formulates a novel generalization of UFP, wherein demands and capacities in the input instance are monotone step functions over the set of edges. As an initial step towards tackling this generalization, we draw on and extend ideas from prior research to devise a quasi-polynomial time approximation scheme (QPTAS) under the premise that the demands and capacities lie in a quasi-polynomial range. Second, retaining the same assumption, an efficient logarithmic approximation is introduced for the single-source variant of the problem. Finally, we round up the contributions by designing a (kind of) black-box reduction that, under some mild conditions, allows to translate LP-based approximation algorithms for the studied problem into their counterparts for the Alternating Current Optimal Power Flow (AC OPF) problem -- a fundamental workflow in operation and control of power systems.
翻译:作为具有显著实际影响的具有挑战性的组合优化问题,不可质疑的“路径流动”问题已引起相当的重视。目前的工作受到电力工程中关键应用的困扰,形成了一种新型的UFP通用,投入实例中的要求和能力是一组边缘的单一步骤功能。作为解决这一普遍化问题的第一步,我们借鉴并扩展了以前研究中的想法,在需求和能力处于准极化范围的前提下,设计出一种准极化时间接近计划(QPTAS)。第二,保留同样的假设,为这一问题的单一源变量引入一种有效的对数近。最后,我们通过设计一种(类型的)黑箱削减,在一些温和的条件下,将研究问题的基于LP的近距离算法(CP)转化为其当前最佳电力流动问题的对应方(AC OPF) -- -- 电力系统运行和控制的基本工作流程。