We study geometric variations of the discriminating code problem. In the \emph{discrete version} of the problem, a finite set of points $P$ and a finite set of objects $S$ are given in $\mathbb{R}^d$. The objective is to choose a subset $S^* \subseteq S$ of minimum cardinality such that for each point $p_i \in P$, the subset $S_i^* \subseteq S^*$ covering $p_i$ satisfies $S_i^*\neq \emptyset$, and each pair $p_i,p_j \in P$, $i \neq j$, we have $S_i^* \neq S_j^*$. In the \emph{continuous version} of the problem, the solution set $S^*$ can be chosen freely among a (potentially infinite) class of allowed geometric objects. In the 1-dimensional case ($d=1$), the points in $P$ are placed on a horizontal line $L$, and the objects in $S$ are finite-length line segments aligned with $L$ (called intervals). We show that the discrete version of this problem is NP-complete. This is somewhat surprising as the continuous version is known to be polynomial-time solvable. Still, for the 1-dimensional discrete version, we design a polynomial-time $2$-approximation algorithm. We also design a PTAS for both discrete and continuous versions in one dimension, for the restriction where the intervals are all required to have the same length. We then study the 2-dimensional case ($d=2$) for axis-parallel unit square objects. We show that both continuous and discrete versions are NP-complete, and design polynomial-time approximation algorithms that produce $(16\cdot OPT+1)$-approximate and $(64\cdot OPT+1)$-approximate solutions respectively, using rounding of suitably defined integer linear programming problems. We show that the identifying code problem for axis-parallel unit square intersection graphs (in $d=2$) can be solved in the same manner as for the discrete version of the discriminating code problem for unit square objects.
翻译:我们研究解析代码问题的几何变异。 在问题的 emph{ discrete 版本中, 以$$\ mathb{ R\\\ d$给出一定的分数, 以美元表示一定的分数, 以美元表示一个最小的基数 $S\\ subseteq S$, 以每点$p_ i\ p$, $的子数S_ i\ subseq S ⁇ $, 包括 $p_ lidro=美元 liter@ial_ dialexet$, 以美元表示一定的分数 $pal_ i, 以美元表示直径= $= 美元, 以美元表示一个直径的立方程式, 以美元表示一个直方位的立式。 解算法的解算法可以以美元表示一个( 可能无限的) 允许的量物体的分数 。 在 1 立方案 (d=1美元) 中, 以美元 美元 立方程式显示一个直方的分数 直方程式, 显示一个直方體 直方體 显示一个直立方體的解的立方體 。